An efficient neural prediction for vector quantization

R. Fioravanti, S. Fioravanti, D. Giusto
{"title":"An efficient neural prediction for vector quantization","authors":"R. Fioravanti, S. Fioravanti, D. Giusto","doi":"10.1109/ICASSP.1994.389440","DOIUrl":null,"url":null,"abstract":"A novel predictive coding scheme for VQ is presented, called dynamic codebook reordering VQ (DCRVQ). Residual correlations between neighboring codevectors are exploited by a nonlinear prediction, that is a neural one. As a matter of fact, on the basis of the previously decoded codevectors, a multilayer neural network makes a prediction, and this result is used to reorganize the codebook in a dynamic way. This allows for efficient Huffman compression of codevector addresses after reordering.<<ETX>>","PeriodicalId":290798,"journal":{"name":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1994.389440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A novel predictive coding scheme for VQ is presented, called dynamic codebook reordering VQ (DCRVQ). Residual correlations between neighboring codevectors are exploited by a nonlinear prediction, that is a neural one. As a matter of fact, on the basis of the previously decoded codevectors, a multilayer neural network makes a prediction, and this result is used to reorganize the codebook in a dynamic way. This allows for efficient Huffman compression of codevector addresses after reordering.<>
一种有效的矢量量化神经预测方法
提出了一种新的VQ预测编码方案——动态码本重排序VQ (DCRVQ)。通过非线性预测,即神经预测,利用相邻协矢量之间的残差相关性。实际上,多层神经网络在先前解码的编向量的基础上进行预测,并利用该预测结果对码本进行动态重组。这允许在重新排序后对编分器地址进行有效的霍夫曼压缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信