VCNet: A generative model for volume completion

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jun Han, Chaoli Wang
{"title":"VCNet: A generative model for volume completion","authors":"Jun Han,&nbsp;Chaoli Wang","doi":"10.1016/j.visinf.2022.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>We present VCNet, a new deep learning approach for volume completion by synthesizing missing subvolumes. Our solution leverages a generative adversarial network (GAN) that learns to complete volumes using the adversarial and volumetric losses. The core design of VCNet features a dilated residual block and long-term connection. During training, VCNet first randomly masks basic subvolumes (e.g., cuboids, slices) from complete volumes and learns to recover them. Moreover, we design a two-stage algorithm for stabilizing and accelerating network optimization. Once trained, VCNet takes an incomplete volume as input and automatically identifies and fills in the missing subvolumes with high quality. We quantitatively and qualitatively test VCNet with volumetric data sets of various characteristics to demonstrate its effectiveness. We also compare VCNet against a diffusion-based solution and two GAN-based solutions.</p></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"6 2","pages":"Pages 62-73"},"PeriodicalIF":3.8000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468502X22000213/pdfft?md5=2cafa6586ad2e597b6694ededebdd295&pid=1-s2.0-S2468502X22000213-main.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X22000213","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 4

Abstract

We present VCNet, a new deep learning approach for volume completion by synthesizing missing subvolumes. Our solution leverages a generative adversarial network (GAN) that learns to complete volumes using the adversarial and volumetric losses. The core design of VCNet features a dilated residual block and long-term connection. During training, VCNet first randomly masks basic subvolumes (e.g., cuboids, slices) from complete volumes and learns to recover them. Moreover, we design a two-stage algorithm for stabilizing and accelerating network optimization. Once trained, VCNet takes an incomplete volume as input and automatically identifies and fills in the missing subvolumes with high quality. We quantitatively and qualitatively test VCNet with volumetric data sets of various characteristics to demonstrate its effectiveness. We also compare VCNet against a diffusion-based solution and two GAN-based solutions.

VCNet:卷补全的生成模型
我们提出了VCNet,一种新的深度学习方法,通过合成缺失子卷来完成体积。我们的解决方案利用生成对抗网络(GAN)来学习使用对抗和体积损失来完成体积。VCNet的核心设计具有扩展剩余块和长期连接的特点。在训练过程中,VCNet首先从完整的卷中随机屏蔽基本子卷(如长方体、切片),并学习恢复它们。此外,我们还设计了一个稳定和加速网络优化的两阶段算法。经过训练后,VCNet将不完整的卷作为输入,自动识别并高质量地填充缺失的子卷。我们用各种特征的体积数据集对VCNet进行了定量和定性测试,以证明其有效性。我们还将VCNet与基于扩散的解决方案和两种基于gan的解决方案进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信