Operational pattern analysis for predictive maintenance scheduling of industrial systems

Yu Zhang, C. Bingham, M. Gallimore, S. Maleki
{"title":"Operational pattern analysis for predictive maintenance scheduling of industrial systems","authors":"Yu Zhang, C. Bingham, M. Gallimore, S. Maleki","doi":"10.1109/CIVEMSA.2015.7158599","DOIUrl":null,"url":null,"abstract":"The paper presents a method to identify the operational usage patterns for industrial systems. Specifically, power measurements from an industrial gas turbine generator are studied. A fast Fourier transform (FFT) and image segmentation is used to develop an intuitive representation of operation. A spectrogram is adopted to study the average usage through the use of spectral power indices, with singular spectral analysis (SSA) applied for operational trend extraction. Through use of these techniques, two fundamental inputs for predictive maintenance scheduling viz. the users behaviour with regard to long-term unit startups patterns, and the duty cycle of power requirements, can be readily identified.","PeriodicalId":348918,"journal":{"name":"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA.2015.7158599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper presents a method to identify the operational usage patterns for industrial systems. Specifically, power measurements from an industrial gas turbine generator are studied. A fast Fourier transform (FFT) and image segmentation is used to develop an intuitive representation of operation. A spectrogram is adopted to study the average usage through the use of spectral power indices, with singular spectral analysis (SSA) applied for operational trend extraction. Through use of these techniques, two fundamental inputs for predictive maintenance scheduling viz. the users behaviour with regard to long-term unit startups patterns, and the duty cycle of power requirements, can be readily identified.
工业系统预测性维修调度的运行模式分析
本文提出了一种识别工业系统操作使用模式的方法。具体而言,研究了工业燃气轮机发电机的功率测量。采用快速傅里叶变换(FFT)和图像分割技术,实现了直观的操作表示。采用谱图方法,利用谱功率指标研究平均利用率,采用奇异谱分析方法提取业务趋势。通过使用这些技术,可以很容易地确定预测性维护计划的两个基本输入,即关于长期单元启动模式的用户行为和电力需求的占空比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信