Statistical time energy based damage detection in steel plates using artificial neural networks

M. Paulraj, M. Majid, S. Yaacob, M. Rahiman, R. Krishnan
{"title":"Statistical time energy based damage detection in steel plates using artificial neural networks","authors":"M. Paulraj, M. Majid, S. Yaacob, M. Rahiman, R. Krishnan","doi":"10.1109/CSPA.2009.5069182","DOIUrl":null,"url":null,"abstract":"In this paper, a simple method for crack identification in steel plates based on statistical time energy is presented. A simple experimental procedure is also proposed to measure the vibration at different positions of a steel plate. The plate is excited by an impulse signal and made to vibrate; statistical features are then extracted from the vibration signals which are measured at different locations. These features are then used to develop a neural network model. A simple neural network model trained by back propagation algorithm is then developed based on the statistical time energy features to classify the damage location in a steel plate. The effectiveness of the system is validated through simulation.","PeriodicalId":338469,"journal":{"name":"2009 5th International Colloquium on Signal Processing & Its Applications","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 5th International Colloquium on Signal Processing & Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA.2009.5069182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, a simple method for crack identification in steel plates based on statistical time energy is presented. A simple experimental procedure is also proposed to measure the vibration at different positions of a steel plate. The plate is excited by an impulse signal and made to vibrate; statistical features are then extracted from the vibration signals which are measured at different locations. These features are then used to develop a neural network model. A simple neural network model trained by back propagation algorithm is then developed based on the statistical time energy features to classify the damage location in a steel plate. The effectiveness of the system is validated through simulation.
基于统计时间能量的人工神经网络钢板损伤检测
本文提出了一种基于统计时间能量的钢板裂纹识别方法。本文还提出了一种简单的实验方法来测量钢板在不同位置的振动。该板受脉冲信号的激励而振动;然后从不同位置测量的振动信号中提取统计特征。然后使用这些特征来开发神经网络模型。基于统计时间-能量特征,建立了基于反向传播算法训练的简单神经网络模型,对钢板损伤位置进行分类。通过仿真验证了该系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信