Robustness Study on NARXSP-Based Stiction Model

H. Zabiri, N. Mazuki
{"title":"Robustness Study on NARXSP-Based Stiction Model","authors":"H. Zabiri, N. Mazuki","doi":"10.1109/ICSAP.2009.43","DOIUrl":null,"url":null,"abstract":"Stiction is the most commonly found valve problem in the process industry. Valve stiction may cause oscillations in control loops which increases variability in product quality, accelerates equipment wear and tear, or leads to system instability. In this paper, a series-parallel Recurrent Neural Network (NARXSP)-based stiction model is developed and its robustness against the uncertainty in the stiction parameters is tested under various conditions. It is shown that the NARXSP-based stiction model is robust when the stiction is less than 6% of the valve travel span","PeriodicalId":176934,"journal":{"name":"2009 International Conference on Signal Acquisition and Processing","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Signal Acquisition and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAP.2009.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stiction is the most commonly found valve problem in the process industry. Valve stiction may cause oscillations in control loops which increases variability in product quality, accelerates equipment wear and tear, or leads to system instability. In this paper, a series-parallel Recurrent Neural Network (NARXSP)-based stiction model is developed and its robustness against the uncertainty in the stiction parameters is tested under various conditions. It is shown that the NARXSP-based stiction model is robust when the stiction is less than 6% of the valve travel span
基于narxsp的粘滞模型鲁棒性研究
粘滞是过程工业中最常见的阀门问题。阀门粘滞可能导致控制回路振荡,从而增加产品质量的可变性,加速设备磨损,或导致系统不稳定。本文建立了一种基于串并联递归神经网络(NARXSP)的粘滞模型,并在各种条件下测试了该模型对粘滞参数不确定性的鲁棒性。结果表明,当阀瓣行程长度小于6%时,基于narxsp的阀瓣伸缩模型具有较强的鲁棒性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信