Searching in a Sorted Linked List

Hemasree Koganti, Yijie Han
{"title":"Searching in a Sorted Linked List","authors":"Hemasree Koganti, Yijie Han","doi":"10.1109/ICIT.2018.00034","DOIUrl":null,"url":null,"abstract":"Let A be the array of n integers in {0, 1, …, n-1}. A tree is constructed in O(nloglogm/p+loglogm) time with p processors based on the trie with all the given integers. Additional nodes (O(nloglogm) of them) are added to the tree. After the tree is construct we can, for any given integer, find the predecessor and successor of this integer, insert or delete the integer in A in O(loglogm) time. This result demonstrates for the searching purpose we need not to sort the input numbers into a sorted array for this would need at least O(logn/loglogn) time while this algorithm for constructing the tree can run in O(loglogm) time with n processors.","PeriodicalId":221269,"journal":{"name":"2018 International Conference on Information Technology (ICIT)","volume":"158 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2018.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Let A be the array of n integers in {0, 1, …, n-1}. A tree is constructed in O(nloglogm/p+loglogm) time with p processors based on the trie with all the given integers. Additional nodes (O(nloglogm) of them) are added to the tree. After the tree is construct we can, for any given integer, find the predecessor and successor of this integer, insert or delete the integer in A in O(loglogm) time. This result demonstrates for the searching purpose we need not to sort the input numbers into a sorted array for this would need at least O(logn/loglogn) time while this algorithm for constructing the tree can run in O(loglogm) time with n processors.
在排序链表中搜索
设A为{0,1,…,n-1}中n个整数的数组。基于所有给定整数的树,用p个处理器在O(nloglogm/p+loglogm)时间内构造树。额外的节点(O(nlogogm))被添加到树中。树构造完成后,对于任意给定的整数,我们可以在O(loglog)时间内找到该整数的前后继,插入或删除A中的整数。该结果表明,出于搜索目的,我们不需要将输入数字排序到排序数组中,因为这至少需要O(logn/loglog)时间,而构建树的算法可以在O(loglog)时间内运行,并使用n个处理器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信