27.6 Single-chip 3072ch 2D array IC with RX analog and all-digital TX beamformer for 3D ultrasound imaging

Y. Katsube, Shinya Kajiyama, Takuma Nishimoto, T. Nakagawa, Yasuyuki Okuma, Yohei Nakamura, T. Terada, Yutaka Igarashi, T. Yamawaki, T. Yazaki, Y. Hayashi, Kazuhiro Amino, Takuya Kaneko, Hiroki Tanaka
{"title":"27.6 Single-chip 3072ch 2D array IC with RX analog and all-digital TX beamformer for 3D ultrasound imaging","authors":"Y. Katsube, Shinya Kajiyama, Takuma Nishimoto, T. Nakagawa, Yasuyuki Okuma, Yohei Nakamura, T. Terada, Yutaka Igarashi, T. Yamawaki, T. Yazaki, Y. Hayashi, Kazuhiro Amino, Takuya Kaneko, Hiroki Tanaka","doi":"10.1109/ISSCC.2017.7870459","DOIUrl":null,"url":null,"abstract":"A diagnostic ultrasound (US) system transmits acoustic waves at several to tens of MHz into the human body for clinical purposes and detects the reflected waves to observe the internal organs without having a medical operation or radiation exposure. The system is composed of a main unit and probe connected via coaxial cables. The probe is very small because medical technicians laboriously grab and manipulate it for a long time. To avoid image obscurity depending on medical technicians, high-speed and high-resolution 3D/4D imaging is necessary. For this reason, several thousands of lead bulk piezoelectric material transducers (TD) need to be squeezed into the small probe. Since the number of cables is limited to several hundreds, the probe needs to include beamforming functionality and a 2D array IC [1–6], which includes thousands of US transceivers.","PeriodicalId":269679,"journal":{"name":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2017.7870459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

A diagnostic ultrasound (US) system transmits acoustic waves at several to tens of MHz into the human body for clinical purposes and detects the reflected waves to observe the internal organs without having a medical operation or radiation exposure. The system is composed of a main unit and probe connected via coaxial cables. The probe is very small because medical technicians laboriously grab and manipulate it for a long time. To avoid image obscurity depending on medical technicians, high-speed and high-resolution 3D/4D imaging is necessary. For this reason, several thousands of lead bulk piezoelectric material transducers (TD) need to be squeezed into the small probe. Since the number of cables is limited to several hundreds, the probe needs to include beamforming functionality and a 2D array IC [1–6], which includes thousands of US transceivers.
27.6单片3072ch 2D阵列IC,带有RX模拟和全数字TX波束形成器,用于3D超声成像
诊断超声(US)系统将几至几十兆赫的声波传输到人体,用于临床目的,并检测反射波以观察内部器官,而无需医疗手术或辐射暴露。该系统由一个主单元和通过同轴电缆连接的探头组成。由于医疗技术人员需要长时间费力地抓取和操作探针,因此探针非常小。为了避免医疗技术人员的图像模糊,需要高速和高分辨率的3D/4D成像。为此,需要将数千个铅块压电材料换能器(TD)压缩到小探头中。由于电缆的数量限制在几百条,探头需要包括波束形成功能和一个2D阵列IC[1-6],其中包括数千个美国收发器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信