Automatic Clustering with Differential Evolution Using Cluster Number Oscillation Method

Wei-Ping Lee, Shen-Wei Chen
{"title":"Automatic Clustering with Differential Evolution Using Cluster Number Oscillation Method","authors":"Wei-Ping Lee, Shen-Wei Chen","doi":"10.1109/IWISA.2010.5473289","DOIUrl":null,"url":null,"abstract":"In this paper, an improved Differential Evolution algorithm (ACDE-O) with cluster number oscillation for automatic crisp clustering has been presented. The proposed algorithm needs no prior knowledge of the number of clusters of the data. Rather, it finds the optimal number of clusters on the processing with stable and fast convergence, cluster number oscillation mechanism will search more possible cluster number in case of bad initial cluster number caused bad clusters. Superiority of the proposed algorithm is demonstrated by comparing it with one recently developed partitional clustering algorithm. Experimental results over three real life datasets and the performance of proposed algorithm is mostly better than the other one.","PeriodicalId":298764,"journal":{"name":"2010 2nd International Workshop on Intelligent Systems and Applications","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWISA.2010.5473289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, an improved Differential Evolution algorithm (ACDE-O) with cluster number oscillation for automatic crisp clustering has been presented. The proposed algorithm needs no prior knowledge of the number of clusters of the data. Rather, it finds the optimal number of clusters on the processing with stable and fast convergence, cluster number oscillation mechanism will search more possible cluster number in case of bad initial cluster number caused bad clusters. Superiority of the proposed algorithm is demonstrated by comparing it with one recently developed partitional clustering algorithm. Experimental results over three real life datasets and the performance of proposed algorithm is mostly better than the other one.
基于聚类数振荡的差分进化自动聚类
本文提出了一种具有簇数振荡的改进差分进化算法(ACDE-O),用于自动聚类。该算法不需要预先知道数据簇的数量。而是在处理过程中找到最优簇数,收敛速度稳定,簇数振荡机制会在初始簇数不佳导致簇数不佳的情况下搜索更多可能的簇数。通过与最近开发的一种分区聚类算法的比较,证明了该算法的优越性。在三个真实数据集上的实验结果表明,所提算法的性能大多优于另一种算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信