{"title":"An energy-recycling (ER) technique for reducing power consumption of field color sequential (FCS) RGB LEDs backlight module","authors":"Ming-Hsin Huang, Yueh-Chang Tsai, Shih-Wei Wang, Dian-Rung Wu, Ke-Horng Chen, Chien-Yu Chen","doi":"10.1109/ASSCC.2009.5357162","DOIUrl":null,"url":null,"abstract":"A single driving module with field color sequential (FCS) LCD technology needs to dynamically switch output voltage between 40 V for 12 series G- and B- color LEDs and 26 V for 12 series R-color LEDs at related time cluster. Thus, an energy-recycling (ER) technology is proposed to accelerate voltage settling and save compressed energy when the driving voltage is pressed from 40 V to 26 V. Only one recycling capacitor and one Schottky diode are added into the power structure of synchronous boost converter for composing the proposed ER technology. A proposed energy-recycling mode (ERM) controller is plugged into a boundary current mode (BCM) controller to control energy delivering and recycling. The proposed ER technology was fabricated by TSMC 0.25 μm 2.5/5 V BCD process. Experimental results demonstrate fast and efficient tracking performance of driving voltage is achieved.","PeriodicalId":263023,"journal":{"name":"2009 IEEE Asian Solid-State Circuits Conference","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Asian Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2009.5357162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A single driving module with field color sequential (FCS) LCD technology needs to dynamically switch output voltage between 40 V for 12 series G- and B- color LEDs and 26 V for 12 series R-color LEDs at related time cluster. Thus, an energy-recycling (ER) technology is proposed to accelerate voltage settling and save compressed energy when the driving voltage is pressed from 40 V to 26 V. Only one recycling capacitor and one Schottky diode are added into the power structure of synchronous boost converter for composing the proposed ER technology. A proposed energy-recycling mode (ERM) controller is plugged into a boundary current mode (BCM) controller to control energy delivering and recycling. The proposed ER technology was fabricated by TSMC 0.25 μm 2.5/5 V BCD process. Experimental results demonstrate fast and efficient tracking performance of driving voltage is achieved.