Point inversion and projection for NURBS curve: control polygon approach

YingLiang Ma, W. T. Hewitt
{"title":"Point inversion and projection for NURBS curve: control polygon approach","authors":"YingLiang Ma, W. T. Hewitt","doi":"10.1109/TPCG.2003.1206938","DOIUrl":null,"url":null,"abstract":"Projecting a test point to a NURBS curve finds the closest point on the curve and point inversion finds the corresponding parameter for this test point. This paper presents an accurate and efficient method to solve both of these problems. We first subdivide the NURBS curves into a set of Bezier curves using knot insertion. For point projection, we extract candidate Bezier subcurves based on the relationship between the test point and the control polygon of the Bezier subcurve. For point inversion, we extract candidate Bezier subcurves based on the strong convex hull property, and then find the approximate candidate points and their corresponding parameter values. Finally, by comparing the distances between the test point and candidate points, we can find the closest point. We improve its accuracy by using the Newton-Raphson method.","PeriodicalId":132138,"journal":{"name":"Proceedings of Theory and Practice of Computer Graphics, 2003.","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Theory and Practice of Computer Graphics, 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPCG.2003.1206938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Projecting a test point to a NURBS curve finds the closest point on the curve and point inversion finds the corresponding parameter for this test point. This paper presents an accurate and efficient method to solve both of these problems. We first subdivide the NURBS curves into a set of Bezier curves using knot insertion. For point projection, we extract candidate Bezier subcurves based on the relationship between the test point and the control polygon of the Bezier subcurve. For point inversion, we extract candidate Bezier subcurves based on the strong convex hull property, and then find the approximate candidate points and their corresponding parameter values. Finally, by comparing the distances between the test point and candidate points, we can find the closest point. We improve its accuracy by using the Newton-Raphson method.
NURBS曲线的点反演与投影:控制多边形方法
将测试点投影到NURBS曲线上,找到曲线上最近的点,点反演找到该测试点的相应参数。本文提出了一种精确而有效的方法来解决这两个问题。我们首先使用结插入将NURBS曲线细分为一组贝塞尔曲线。对于点投影,我们基于测试点与贝塞尔子曲线控制多边形的关系提取候选贝塞尔子曲线。对于点反演,我们基于强凸包特性提取候选Bezier子曲线,然后找到近似候选点及其对应的参数值。最后,通过比较测试点和候选点之间的距离,找到最近的点。我们利用牛顿-拉夫逊方法提高了它的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信