Learning to Match Heterogeneous Structures using Partially Labeled Data

Web-KR '14 Pub Date : 2014-11-03 DOI:10.1145/2663792.2663797
Saravadee Sae Tan, T. Lim, Lay-Ki Soon, E. Tang
{"title":"Learning to Match Heterogeneous Structures using Partially Labeled Data","authors":"Saravadee Sae Tan, T. Lim, Lay-Ki Soon, E. Tang","doi":"10.1145/2663792.2663797","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of matching between highly heterogeneous structures. The problem is modeled as a classification task where training examples are used to learn the matching between structures. In our approach, training is performed using partially labeled data. We propose a Greedy Mapping approach to generate training examples from partially labeled data. Different types of structures may have different types of attributes that can be exploited to enhance the matching problem. We utilize three types of attributes, namely, text content, structure name and path correspondence, in the matching problem. Experiments are performed on two types of structures: semantic domain and semantic role. We evaluate the effectiveness of the Greedy Mapping as well as the performance on different types of attributes. Finally, the results are presented and discussed.","PeriodicalId":289794,"journal":{"name":"Web-KR '14","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web-KR '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2663792.2663797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper addresses the problem of matching between highly heterogeneous structures. The problem is modeled as a classification task where training examples are used to learn the matching between structures. In our approach, training is performed using partially labeled data. We propose a Greedy Mapping approach to generate training examples from partially labeled data. Different types of structures may have different types of attributes that can be exploited to enhance the matching problem. We utilize three types of attributes, namely, text content, structure name and path correspondence, in the matching problem. Experiments are performed on two types of structures: semantic domain and semantic role. We evaluate the effectiveness of the Greedy Mapping as well as the performance on different types of attributes. Finally, the results are presented and discussed.
学习使用部分标记数据匹配异构结构
本文解决了高度异构结构之间的匹配问题。该问题被建模为一个分类任务,其中训练样本用于学习结构之间的匹配。在我们的方法中,训练是使用部分标记的数据进行的。我们提出了一种贪心映射方法来从部分标记的数据中生成训练样例。不同类型的结构可能具有不同类型的属性,可以利用这些属性来增强匹配问题。我们在匹配问题中使用了三种类型的属性,即文本内容、结构名称和路径对应。对语义域和语义角色两类结构进行了实验。我们评估了贪心映射的有效性以及在不同类型属性上的性能。最后,给出了研究结果并进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信