Opportunities for data-driven cloud-based mobile optimization

William Myott, Thao Nguyen, A. Chandra, G. Karypis, J. Weissman
{"title":"Opportunities for data-driven cloud-based mobile optimization","authors":"William Myott, Thao Nguyen, A. Chandra, G. Karypis, J. Weissman","doi":"10.1109/CTS.2014.6867611","DOIUrl":null,"url":null,"abstract":"In this paper, we present our vision for cloud-based mobile computing using user profile information. Such information enables a series of data-driven optimizations: filtering, aggregation, and speculation, that go beyond the well-researched benefit of mobile outsourcing. These optimizations can improve performance, reliability, and energy usage. A novel aspect of our approach is to exploit the unique ability of the cloud to collect and analyze large amounts of user profile data, cache shared data, and even enable sharing of computations, across different mobile users. We present results for two exemplar mobile-cloud applications, driven by workload traces derived from Twitter feeds and Wikipedia document editing, to illustrate these opportunities.","PeriodicalId":409799,"journal":{"name":"2014 International Conference on Collaboration Technologies and Systems (CTS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Collaboration Technologies and Systems (CTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CTS.2014.6867611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present our vision for cloud-based mobile computing using user profile information. Such information enables a series of data-driven optimizations: filtering, aggregation, and speculation, that go beyond the well-researched benefit of mobile outsourcing. These optimizations can improve performance, reliability, and energy usage. A novel aspect of our approach is to exploit the unique ability of the cloud to collect and analyze large amounts of user profile data, cache shared data, and even enable sharing of computations, across different mobile users. We present results for two exemplar mobile-cloud applications, driven by workload traces derived from Twitter feeds and Wikipedia document editing, to illustrate these opportunities.
数据驱动的基于云的移动优化机会
在本文中,我们提出了使用用户配置文件信息的基于云的移动计算的愿景。这样的信息可以实现一系列数据驱动的优化:过滤、聚合和推测,这超出了移动外包的充分研究的好处。这些优化可以提高性能、可靠性和能源使用。我们方法的一个新颖方面是利用云的独特能力来收集和分析大量的用户资料数据,缓存共享数据,甚至可以在不同的移动用户之间共享计算。我们展示了两个典型的移动云应用程序的结果,由来自Twitter feed和维基百科文档编辑的工作量跟踪驱动,以说明这些机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信