Asset Pricing and Machine Learning: A Critical Review of Empirical Findings

Matteo Bagnara
{"title":"Asset Pricing and Machine Learning: A Critical Review of Empirical Findings","authors":"Matteo Bagnara","doi":"10.2139/ssrn.3950568","DOIUrl":null,"url":null,"abstract":"The latest development in Empirical Asset Pricing is the employment of Machine Learning methods to address the problem of the factor zoo. These techniques offer great flexibility and prediction accuracy but require special care as they strongly depart from traditional Econometrics. I review and critically assess the most recent and relevant contributions in the literature with special attention to the interpretation of non-standard statistical tools applied to this field and I summarize the empirical findings in detail into hints for further developments.","PeriodicalId":414260,"journal":{"name":"Capital Markets: Asset Pricing & Valuation eJournal","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Capital Markets: Asset Pricing & Valuation eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3950568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The latest development in Empirical Asset Pricing is the employment of Machine Learning methods to address the problem of the factor zoo. These techniques offer great flexibility and prediction accuracy but require special care as they strongly depart from traditional Econometrics. I review and critically assess the most recent and relevant contributions in the literature with special attention to the interpretation of non-standard statistical tools applied to this field and I summarize the empirical findings in detail into hints for further developments.
资产定价和机器学习:对实证研究结果的批判性回顾
经验资产定价的最新发展是利用机器学习方法来解决因素动物园的问题。这些技术提供了很大的灵活性和预测准确性,但需要特别注意,因为它们与传统的计量经济学有很大的不同。我回顾并批判性地评估了文献中最新和相关的贡献,特别关注应用于该领域的非标准统计工具的解释,并详细总结了实证研究结果,为进一步发展提供了提示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信