A stock price forecasting application using neural networks with multi-optimizer

C. Worasucheep
{"title":"A stock price forecasting application using neural networks with multi-optimizer","authors":"C. Worasucheep","doi":"10.1109/IWCIA.2016.7805750","DOIUrl":null,"url":null,"abstract":"This paper proposes an application prototype for forecasting of stock prices using feed-forward neural network with back propagation, Particle Swarm Optimization and Differential Evolution. The prototype provides a convenient graphical user interface that allows choosing stocks, period of data, percentage of training set, technical indicators for model inputs and other algorithmic parameters. Multithreading is provided for efficient running and the downloaded historical data and forecasted output can be save for future use. An experiment was performed to investigate the performance of the three algorithms as well as the effects of number of hidden nodes of the neural networks.","PeriodicalId":262942,"journal":{"name":"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCIA.2016.7805750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes an application prototype for forecasting of stock prices using feed-forward neural network with back propagation, Particle Swarm Optimization and Differential Evolution. The prototype provides a convenient graphical user interface that allows choosing stocks, period of data, percentage of training set, technical indicators for model inputs and other algorithmic parameters. Multithreading is provided for efficient running and the downloaded historical data and forecasted output can be save for future use. An experiment was performed to investigate the performance of the three algorithms as well as the effects of number of hidden nodes of the neural networks.
基于多优化器的神经网络股票价格预测应用
提出了一种基于反向传播、粒子群优化和差分进化的前馈神经网络预测股价的应用原型。该原型提供了一个方便的图形用户界面,允许选择股票,数据周期,训练集的百分比,模型输入的技术指标和其他算法参数。提供多线程以提高运行效率,并且可以保存下载的历史数据和预测输出以供将来使用。通过实验研究了这三种算法的性能以及隐节点数对神经网络的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信