M. Sakamoto, A. Katsuno, Aiichiro Inoue, T. Asakawa, H. Ueno, K. Morita, Yasunori Kimura
{"title":"Microarchitecture and performance analysis of a SPARC-V9 microprocessor for enterprise server systems","authors":"M. Sakamoto, A. Katsuno, Aiichiro Inoue, T. Asakawa, H. Ueno, K. Morita, Yasunori Kimura","doi":"10.1109/HPCA.2003.1183533","DOIUrl":null,"url":null,"abstract":"We developed a 1.3-GHz SPARC-V9 processor: the SPARC64 V. This processor is designed to address requirements for enterprise servers and high-performance computing. Processing speed under multiuser interactive workloads is very sensitive to system balance because of the large number of memory requests included. From many years of experience with such workloads in mainframe system developments, we give importance to design a well-balanced communication structure. To accomplish this task, a system-level performance study must begin at an early please. Therefore we developed a performance model, which consists of a detailed processor model and detailed memory model, before hardware design was started. We updated it continuously. Once a logic simulator became available, we used it to verify the performance model for improving its accuracy. The model quite effectively enabled us to achieve performance goals and finish development quickly. This paper describes the SPARC64 V microarchitecture and performance analyses for hardware design.","PeriodicalId":150992,"journal":{"name":"The Ninth International Symposium on High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ninth International Symposium on High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2003.1183533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
We developed a 1.3-GHz SPARC-V9 processor: the SPARC64 V. This processor is designed to address requirements for enterprise servers and high-performance computing. Processing speed under multiuser interactive workloads is very sensitive to system balance because of the large number of memory requests included. From many years of experience with such workloads in mainframe system developments, we give importance to design a well-balanced communication structure. To accomplish this task, a system-level performance study must begin at an early please. Therefore we developed a performance model, which consists of a detailed processor model and detailed memory model, before hardware design was started. We updated it continuously. Once a logic simulator became available, we used it to verify the performance model for improving its accuracy. The model quite effectively enabled us to achieve performance goals and finish development quickly. This paper describes the SPARC64 V microarchitecture and performance analyses for hardware design.