Measurement of Local Differential Privacy Techniques for IoT-based Streaming Data

Sharmin Afrose, D. Yao, O. Kotevska
{"title":"Measurement of Local Differential Privacy Techniques for IoT-based Streaming Data","authors":"Sharmin Afrose, D. Yao, O. Kotevska","doi":"10.1109/PST52912.2021.9647839","DOIUrl":null,"url":null,"abstract":"Various Internet of Things (IoT) devices generate complex, dynamically changed, and infinite data streams. Adversaries can cause harm if they can access the user’s sensitive raw streaming data. For this reason, protecting the privacy of the data streams is crucial. In this paper, we explore local differential privacy techniques for streaming data. We compare the techniques and report the advantages and limitations. We also present the effect on component (e.g., smoother, perturber) variations of distribution-based local differential privacy. We find that combining distribution-based noise during perturbation provides more flexibility to the interested entity.","PeriodicalId":144610,"journal":{"name":"2021 18th International Conference on Privacy, Security and Trust (PST)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th International Conference on Privacy, Security and Trust (PST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PST52912.2021.9647839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Various Internet of Things (IoT) devices generate complex, dynamically changed, and infinite data streams. Adversaries can cause harm if they can access the user’s sensitive raw streaming data. For this reason, protecting the privacy of the data streams is crucial. In this paper, we explore local differential privacy techniques for streaming data. We compare the techniques and report the advantages and limitations. We also present the effect on component (e.g., smoother, perturber) variations of distribution-based local differential privacy. We find that combining distribution-based noise during perturbation provides more flexibility to the interested entity.
基于物联网流数据的局部差分隐私技术测量
各种物联网(IoT)设备产生复杂的、动态变化的、无限的数据流。如果攻击者能够访问用户敏感的原始流数据,他们可能会造成伤害。出于这个原因,保护数据流的隐私至关重要。在本文中,我们探讨了流数据的局部差分隐私技术。我们比较了这些技术,并报告了它们的优点和局限性。我们还介绍了基于分布的局部差分隐私对组件(例如,平滑,扰动)变化的影响。我们发现在扰动期间结合基于分布的噪声为感兴趣的实体提供了更大的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信