Semiclassical Approximation in Stochastic Optimal Control: I. Portfolio Construction Problem

S. Chaiworawitkul, P. Hagan, Andrew S. Lesniewski
{"title":"Semiclassical Approximation in Stochastic Optimal Control: I. Portfolio Construction Problem","authors":"S. Chaiworawitkul, P. Hagan, Andrew S. Lesniewski","doi":"10.2139/ssrn.2457664","DOIUrl":null,"url":null,"abstract":"This is the first in a series of papers in which we study an efficient approximation scheme for solving the Hamilton-Jacobi-Bellman equation for multi-dimensional problems in stochastic control theory. The method is a combination of a WKB style asymptotic expansion of the value function, which reduces the second order HJB partial differential equation to a hierarchy of first order PDEs, followed by a numerical algorithm to solve the first few of the resulting first order PDEs. This method is applicable to stochastic systems with a relatively large number of degrees of freedom, and does not seem to suffer from the curse of dimensionality. Computer code implementation of the method using modest computational resources runs essentially in real time. We apply the method to solve a general portfolio construction problem.","PeriodicalId":365755,"journal":{"name":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2457664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This is the first in a series of papers in which we study an efficient approximation scheme for solving the Hamilton-Jacobi-Bellman equation for multi-dimensional problems in stochastic control theory. The method is a combination of a WKB style asymptotic expansion of the value function, which reduces the second order HJB partial differential equation to a hierarchy of first order PDEs, followed by a numerical algorithm to solve the first few of the resulting first order PDEs. This method is applicable to stochastic systems with a relatively large number of degrees of freedom, and does not seem to suffer from the curse of dimensionality. Computer code implementation of the method using modest computational resources runs essentially in real time. We apply the method to solve a general portfolio construction problem.
随机最优控制中的半经典逼近:1 .投资组合构造问题
本文是研究随机控制理论中求解多维问题的Hamilton-Jacobi-Bellman方程的有效逼近格式的系列论文中的第一篇。该方法结合WKB式的值函数渐近展开式,将二阶HJB偏微分方程简化为一阶偏微分方程的层次结构,然后用数值算法求解得到的前几个一阶偏微分方程。该方法适用于具有相对较多自由度的随机系统,并且似乎不受维数诅咒的影响。该方法的计算机代码实现使用适度的计算资源,基本上是实时运行的。我们将该方法应用于解决一般的投资组合构建问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信