Compressed sensing Bayes-risk detection for frame based multi-user systems

F. Monsees, C. Bockelmann, A. Dekorsy
{"title":"Compressed sensing Bayes-risk detection for frame based multi-user systems","authors":"F. Monsees, C. Bockelmann, A. Dekorsy","doi":"10.1109/PIMRC.2013.6666134","DOIUrl":null,"url":null,"abstract":"Performing joint activity and data detection has recently gained attention for reducing signaling overhead in multi-user Machine-to-Machine Communication systems. In this context, Compressed Sensing has been identified as a good candidate for joint activity and data detection especially in scenarios where the activity probability is very low. This paper augments activity and data detection for frame based multi-user uplink scenarios where nodes are (in)active for the duration of a frame. We propose a two stage detector which first estimates the set of active nodes followed by a data detector. Our detector outperforms symbol-by-symbol Maximum a posteriori detection.","PeriodicalId":210993,"journal":{"name":"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2013.6666134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Performing joint activity and data detection has recently gained attention for reducing signaling overhead in multi-user Machine-to-Machine Communication systems. In this context, Compressed Sensing has been identified as a good candidate for joint activity and data detection especially in scenarios where the activity probability is very low. This paper augments activity and data detection for frame based multi-user uplink scenarios where nodes are (in)active for the duration of a frame. We propose a two stage detector which first estimates the set of active nodes followed by a data detector. Our detector outperforms symbol-by-symbol Maximum a posteriori detection.
基于帧的多用户系统压缩感知贝叶斯风险检测
在多用户机器对机器通信系统中,执行联合活动和数据检测最近引起了人们的关注,以减少信令开销。在这种情况下,压缩感知已被确定为联合活动和数据检测的良好候选,特别是在活动概率非常低的情况下。本文增强了基于帧的多用户上行场景的活动和数据检测,其中节点在帧持续时间内处于活动状态。我们提出了一种两阶段检测器,它首先估计活动节点集,然后是数据检测器。我们的检测器优于逐个符号的最大后验检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信