Hotspots Detection on Microblog

Silong Zhang, Junyong Luo, Yan Liu, Dong Yao, Yu Tian
{"title":"Hotspots Detection on Microblog","authors":"Silong Zhang, Junyong Luo, Yan Liu, Dong Yao, Yu Tian","doi":"10.1109/MINES.2012.118","DOIUrl":null,"url":null,"abstract":"Main microblog research is focus on the structural analysis of social networks, rather than the text and topic analysis. Traditional topic detection methods could not be applied due to the microblog short text features and structural characteristics. We taken advantage of availability of latent Dirichlet allocation (LDA) to expand the text feature space, and used frequency statistics for our topic ranking, and improved it based on the microblog nontext element data and word element. We taken into account both the text context similarity and semantic similarity in order to make it possible that the traditional clustering method can make difference in the microblog text topic analysis. Experimental studies show our method works well on microblog dataset.","PeriodicalId":208089,"journal":{"name":"2012 Fourth International Conference on Multimedia Information Networking and Security","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Multimedia Information Networking and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MINES.2012.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Main microblog research is focus on the structural analysis of social networks, rather than the text and topic analysis. Traditional topic detection methods could not be applied due to the microblog short text features and structural characteristics. We taken advantage of availability of latent Dirichlet allocation (LDA) to expand the text feature space, and used frequency statistics for our topic ranking, and improved it based on the microblog nontext element data and word element. We taken into account both the text context similarity and semantic similarity in order to make it possible that the traditional clustering method can make difference in the microblog text topic analysis. Experimental studies show our method works well on microblog dataset.
微博热点检测
微博研究主要侧重于社交网络的结构分析,而不是文本和话题分析。由于微博短文本的特点和结构特点,传统的话题检测方法无法应用。我们利用潜在狄利克雷分配(latent Dirichlet allocation, LDA)的可用性来扩展文本特征空间,利用频率统计进行主题排序,并在微博非文本元素数据和词元素数据的基础上进行改进。我们同时考虑了文本上下文相似度和语义相似度,使传统的聚类方法能够在微博文本主题分析中发挥作用。实验研究表明,该方法在微博数据集上效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信