I. Tsampoulatidis, Nikolaos Gkalelis, A. Dimou, V. Mezaris, Y. Kompatsiaris
{"title":"High-level event detection system based on discriminant visual concepts","authors":"I. Tsampoulatidis, Nikolaos Gkalelis, A. Dimou, V. Mezaris, Y. Kompatsiaris","doi":"10.1145/1991996.1992064","DOIUrl":null,"url":null,"abstract":"This paper demonstrates a new approach to detecting high-level events that may be depicted in images or video frames. Given a non-annotated content item, a large number of previously trained visual concept detectors are applied to it and their responses are used for representing the content item with a model vector in a high-dimensional concept space. Subsequently, an improved subclass discriminant analysis method is used for identifying a concept subspace within the aforementioned concept space, that is most appropriate for detecting and recognizing the target high-level events. In this subspace, the nearest neighbor rule is used for comparing the non-annotated content item with a few known example instances of the target events. The high-level events used as target events in the present version of the system are those defined for the TRECVID 2010 Multimedia Event Detection (MED) task.","PeriodicalId":390933,"journal":{"name":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1991996.1992064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
This paper demonstrates a new approach to detecting high-level events that may be depicted in images or video frames. Given a non-annotated content item, a large number of previously trained visual concept detectors are applied to it and their responses are used for representing the content item with a model vector in a high-dimensional concept space. Subsequently, an improved subclass discriminant analysis method is used for identifying a concept subspace within the aforementioned concept space, that is most appropriate for detecting and recognizing the target high-level events. In this subspace, the nearest neighbor rule is used for comparing the non-annotated content item with a few known example instances of the target events. The high-level events used as target events in the present version of the system are those defined for the TRECVID 2010 Multimedia Event Detection (MED) task.