Gain scheduled control for active magnetic bearing system considering gyroscopic effect

Akio Sanbayashi, Masanori Narita, Gan Chen, I. Takami
{"title":"Gain scheduled control for active magnetic bearing system considering gyroscopic effect","authors":"Akio Sanbayashi, Masanori Narita, Gan Chen, I. Takami","doi":"10.1109/ICITEED.2015.7409009","DOIUrl":null,"url":null,"abstract":"This paper proposes gain scheduled (GS) control for an active magnetic bearing (AMB) system. The system levitates and supports a rotor without contact. The AMB is unstable and strongly nonlinear due to characteristics of the magnetic levitation. Furthermore, gyroscopic effect occurs corresponding to the rotational speed and the moment of inertia of the rotor. Thus, the AMB system tends to be unstable by the gyroscopic effect. The rotational speed is not fixed but variable in actual operation. It is treated as a time-varying parameter. The moment of inertia does not changed in operation but different by situations. It is treated as an uncertain time-invariant parameter. The robust stability for the uncertain parameters in the rotational speed and the moment of inertia is guaranteed by using polytopic representation. Linear fractional transformation (LFT) is applied to design the GS controller via parameter dependent Lyapunov function. The problem of designing the GS controller can be formulated as solving a finite set of linear matrix inequality (LMI) conditions. The effectiveness of the proposed method is illustrated by simulations.","PeriodicalId":207985,"journal":{"name":"2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEED.2015.7409009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper proposes gain scheduled (GS) control for an active magnetic bearing (AMB) system. The system levitates and supports a rotor without contact. The AMB is unstable and strongly nonlinear due to characteristics of the magnetic levitation. Furthermore, gyroscopic effect occurs corresponding to the rotational speed and the moment of inertia of the rotor. Thus, the AMB system tends to be unstable by the gyroscopic effect. The rotational speed is not fixed but variable in actual operation. It is treated as a time-varying parameter. The moment of inertia does not changed in operation but different by situations. It is treated as an uncertain time-invariant parameter. The robust stability for the uncertain parameters in the rotational speed and the moment of inertia is guaranteed by using polytopic representation. Linear fractional transformation (LFT) is applied to design the GS controller via parameter dependent Lyapunov function. The problem of designing the GS controller can be formulated as solving a finite set of linear matrix inequality (LMI) conditions. The effectiveness of the proposed method is illustrated by simulations.
考虑陀螺效应的主动磁轴承系统增益调度控制
针对主动磁轴承(AMB)系统,提出了一种增益调度控制方法。该系统悬浮和支撑转子无接触。受磁悬浮特性的影响,电磁轴承具有不稳定性和强非线性。此外,转子的转速和转动惯量会产生相应的陀螺仪效应。因此,由于陀螺效应的影响,AMB系统趋于不稳定。转速在实际运行中不是固定的,而是可变的。它被视为时变参数。转动惯量在运行中不改变,但在不同情况下不同。它被视为一个不确定的时不变参数。对转速和转动惯量等不确定参数采用多面体表示,保证了系统的鲁棒稳定性。采用线性分数变换(LFT)通过参数相关的李雅普诺夫函数设计了GS控制器。设计GS控制器的问题可以表述为求解一组有限的线性矩阵不等式(LMI)条件。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信