On the suitability of diversity metrics for learning-to-rank for diversity

Rodrygo L. T. Santos, C. Macdonald, I. Ounis
{"title":"On the suitability of diversity metrics for learning-to-rank for diversity","authors":"Rodrygo L. T. Santos, C. Macdonald, I. Ounis","doi":"10.1145/2009916.2010111","DOIUrl":null,"url":null,"abstract":"An optimally diverse ranking should achieve the maximum coverage of the aspects underlying an ambiguous or underspecified query, with minimum redundancy with respect to the covered aspects. Although evaluation metrics that reward coverage and penalise redundancy provide intuitive objective functions for learning a diverse ranking, it is unclear whether they are the most effective. In this paper, we contrast the suitability of relevance and diversity metrics as objective functions for learning a diverse ranking. Our results in the context of the diversity task of the TREC 2009 and 2010 Web tracks show that diversity metrics are not necessarily better suited for guiding a learning approach. Moreover, the suitability of these metrics is compromised as they try to penalise redundancy during the learning process.","PeriodicalId":356580,"journal":{"name":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2009916.2010111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

An optimally diverse ranking should achieve the maximum coverage of the aspects underlying an ambiguous or underspecified query, with minimum redundancy with respect to the covered aspects. Although evaluation metrics that reward coverage and penalise redundancy provide intuitive objective functions for learning a diverse ranking, it is unclear whether they are the most effective. In this paper, we contrast the suitability of relevance and diversity metrics as objective functions for learning a diverse ranking. Our results in the context of the diversity task of the TREC 2009 and 2010 Web tracks show that diversity metrics are not necessarily better suited for guiding a learning approach. Moreover, the suitability of these metrics is compromised as they try to penalise redundancy during the learning process.
论多样性指标在多样性排序学习中的适用性
最优多样化的排序应该实现模糊或未指定的查询所涉及的方面的最大覆盖范围,与所覆盖的方面相关的冗余最小。尽管奖励覆盖和惩罚冗余的评估指标为学习多样化排名提供了直观的目标函数,但尚不清楚它们是否最有效。在本文中,我们对比了相关性和多样性指标作为学习多样化排名的目标函数的适用性。我们在TREC 2009年和2010年网络跟踪的多样性任务背景下的研究结果表明,多样性指标不一定更适合指导学习方法。此外,这些指标的适用性受到损害,因为它们试图在学习过程中惩罚冗余。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信