{"title":"A chip-level security framework for assessing sensor data integrity: work-in-progress","authors":"Taimour Wehbe, V. Mooney, D. Keezer","doi":"10.5555/3283568.3283588","DOIUrl":null,"url":null,"abstract":"The continuously increasing inter-connectivity of sensor nodes that form the basis of the Internet-of-Things results in new avenues of attack exploitable by adversaries to maliciously modify data captured by these nodes. In this work, we present a framework for detecting malicious hardware alterations that attempt to attack state-of-the-art microchips that form these sensor nodes. Specifically, we focus on extremely small Hardware Trojans (HTs) that attempt to modify sensor data right away as the data is received on a state-of-the-art chip fabricated in an untrusted facility. We present a dual-chip approach composed of an untrusted state-of-the-art prover chip and a trusted verifier chip, where the verifier continuously challenges the prover at run-time to ensure correct operation and assess the integrity of the captured data. Our preliminary analysis of the proposed mechanism shows that HT attacks anywhere on the untrusted state-of-the-art chip are detected and flagged preventing maliciously altered data to be transmitted out of the sensor node.","PeriodicalId":300268,"journal":{"name":"International Conference on Hardware/Software Codesign and System Synthesis","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Hardware/Software Codesign and System Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/3283568.3283588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The continuously increasing inter-connectivity of sensor nodes that form the basis of the Internet-of-Things results in new avenues of attack exploitable by adversaries to maliciously modify data captured by these nodes. In this work, we present a framework for detecting malicious hardware alterations that attempt to attack state-of-the-art microchips that form these sensor nodes. Specifically, we focus on extremely small Hardware Trojans (HTs) that attempt to modify sensor data right away as the data is received on a state-of-the-art chip fabricated in an untrusted facility. We present a dual-chip approach composed of an untrusted state-of-the-art prover chip and a trusted verifier chip, where the verifier continuously challenges the prover at run-time to ensure correct operation and assess the integrity of the captured data. Our preliminary analysis of the proposed mechanism shows that HT attacks anywhere on the untrusted state-of-the-art chip are detected and flagged preventing maliciously altered data to be transmitted out of the sensor node.