Ex-NNQMD: Extreme-Scale Neural Network Quantum Molecular Dynamics

P. Rajak, Anikeya Aditya, S. Fukushima, R. Kalia, Thomas M Linker, Kuang Liu, Ye Luo, A. Nakano, K. Nomura, K. Shimamura, F. Shimojo, P. Vashishta
{"title":"Ex-NNQMD: Extreme-Scale Neural Network Quantum Molecular Dynamics","authors":"P. Rajak, Anikeya Aditya, S. Fukushima, R. Kalia, Thomas M Linker, Kuang Liu, Ye Luo, A. Nakano, K. Nomura, K. Shimamura, F. Shimojo, P. Vashishta","doi":"10.1109/IPDPSW52791.2021.00145","DOIUrl":null,"url":null,"abstract":"Deep learning is revolutionizing countless scientific and engineering fields. In particular, SC20 Gordon Bell award represented a breakthrough in molecular simulation, i.e., 100-million-atom simulation with quantum-mechanical accuracy on the Summit supercomputer at ORNL, using deep potential molecular dynamics (MD). Moving forward, while these simulations were performed only in gentle equilibrium conditions, far-from-equilibrium MD simulation involving light-induced electronic excited states finds numerous scientific and engineering applications. However, it remains a challenge to perform such far-from-equilibrium simulations at larger spatiotemporal scales, where growing number of unphysical predictions of interatomic force prohibits simulations involving larger numbers of atoms for longer times. In this paper, we propose a physically-based inductive bias, maximally-preserved Maxwell-Boltzmann (MPMB), to overcome this fidelity-scaling problem. Along with hybrid divide-and-conquer parallelization and single-node level optimization using multithreading and data parallel SIMD, the resulting Ex-NNQMD (extreme-scale neural network quantum molecular dynamics) algorithm has achieved unprecedented scales of far-from-equilibrium simulations: 1) 5.1-billion atom system with a parallel efficiency of 0.94, and 2) a sustained performance of 6.4 nanoseconds/day for 10-million atom system both on 262,144 cores of the Theta supercomputer at Argonne Leadership Computing Facility. Extended fidelity scaling and efficient parallelization have allowed us for the first time to study light-induced ferroelectric switching under extreme electronic excitation at experimentally relevant spatiotemporal scales with accuracy.","PeriodicalId":170832,"journal":{"name":"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW52791.2021.00145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Deep learning is revolutionizing countless scientific and engineering fields. In particular, SC20 Gordon Bell award represented a breakthrough in molecular simulation, i.e., 100-million-atom simulation with quantum-mechanical accuracy on the Summit supercomputer at ORNL, using deep potential molecular dynamics (MD). Moving forward, while these simulations were performed only in gentle equilibrium conditions, far-from-equilibrium MD simulation involving light-induced electronic excited states finds numerous scientific and engineering applications. However, it remains a challenge to perform such far-from-equilibrium simulations at larger spatiotemporal scales, where growing number of unphysical predictions of interatomic force prohibits simulations involving larger numbers of atoms for longer times. In this paper, we propose a physically-based inductive bias, maximally-preserved Maxwell-Boltzmann (MPMB), to overcome this fidelity-scaling problem. Along with hybrid divide-and-conquer parallelization and single-node level optimization using multithreading and data parallel SIMD, the resulting Ex-NNQMD (extreme-scale neural network quantum molecular dynamics) algorithm has achieved unprecedented scales of far-from-equilibrium simulations: 1) 5.1-billion atom system with a parallel efficiency of 0.94, and 2) a sustained performance of 6.4 nanoseconds/day for 10-million atom system both on 262,144 cores of the Theta supercomputer at Argonne Leadership Computing Facility. Extended fidelity scaling and efficient parallelization have allowed us for the first time to study light-induced ferroelectric switching under extreme electronic excitation at experimentally relevant spatiotemporal scales with accuracy.
Ex-NNQMD:极端尺度神经网络量子分子动力学
深度学习正在革新无数的科学和工程领域。特别是SC20戈登·贝尔奖代表了分子模拟领域的突破,即在ORNL的Summit超级计算机上使用深势分子动力学(deep potential molecular dynamics, MD)实现了具有量子力学精度的1亿原子模拟。展望未来,虽然这些模拟仅在温和的平衡条件下进行,但涉及光诱导电子激发态的非平衡MD模拟发现了许多科学和工程应用。然而,在更大的时空尺度上进行这种远离平衡的模拟仍然是一个挑战,因为越来越多的原子间相互作用的非物理预测禁止了涉及更多原子的长时间模拟。在本文中,我们提出了一种基于物理的归纳偏倚,最大保存麦克斯韦-玻尔兹曼(MPMB),以克服这种保真度缩放问题。结合分治并行化和单节点级优化,采用多线程和数据并行SIMD,由此产生的Ex-NNQMD(极端尺度神经网络量子分子动力学)算法实现了前所未有的非平衡模拟规模:1) 51亿个原子系统的并行效率为0.94,2)1000万个原子系统的持续性能为6.4纳秒/天,这两个系统都是在阿贡领导计算设施的Theta超级计算机的262,144个核上进行的。扩展保真度缩放和高效并行化使我们首次在实验相关的时空尺度上精确地研究了极端电子激发下的光致铁电开关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信