Performance of perceptron predictors for lossless EEG signal compression

N. Sriraam, C. Eswaran
{"title":"Performance of perceptron predictors for lossless EEG signal compression","authors":"N. Sriraam, C. Eswaran","doi":"10.1109/TENCON.2003.1273191","DOIUrl":null,"url":null,"abstract":"In this paper, the performance of different types of perceptron predictors for EEG signal compression is investigated. A two-stage lossless compression scheme which involves the decorrelation of EEG samples in the first stage and entropy coding in the second stage is considered. The second stage employs an arithmetic coding scheme. A comparison of the performance of the perceptron predictors with that of linear predictors such as FIR, NLMS is presented. It is found that the single-layer perceptron performs, in general, better than the multi-layer perceptrons as well as linear predictors.","PeriodicalId":405847,"journal":{"name":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2003.1273191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, the performance of different types of perceptron predictors for EEG signal compression is investigated. A two-stage lossless compression scheme which involves the decorrelation of EEG samples in the first stage and entropy coding in the second stage is considered. The second stage employs an arithmetic coding scheme. A comparison of the performance of the perceptron predictors with that of linear predictors such as FIR, NLMS is presented. It is found that the single-layer perceptron performs, in general, better than the multi-layer perceptrons as well as linear predictors.
脑电信号无损压缩的感知器预测性能
本文研究了不同类型的感知器预测器在脑电信号压缩中的性能。提出了一种两阶段无损压缩方案,第一阶段对脑电信号样本进行去相关处理,第二阶段进行熵值编码。第二阶段采用算术编码方案。将感知器预测器的性能与FIR、NLMS等线性预测器的性能进行了比较。研究发现,单层感知器的性能总体上优于多层感知器和线性预测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信