Methods for Arriving at Numerical Solutions for Equations of the Type (k+3) & (k+5) Bi-quadratic's Equal to a Bi-quadratic (For Different Values of k)

S. Tomita, Oliver Couto
{"title":"Methods for Arriving at Numerical Solutions for Equations of the Type (k+3) & (k+5) Bi-quadratic's Equal to a Bi-quadratic (For Different Values of k)","authors":"S. Tomita, Oliver Couto","doi":"10.13189/UJAM.2016.040201","DOIUrl":null,"url":null,"abstract":"Different authors have done analysis regarding sums of powers (Ref. no. 1,2 & 3), but systematic approach for solving Diophantine equations having sums of many bi-quadratics equal to a quartic has not been done before. In this paper we give methods for finding numerical solutions to equation (A) given above in section one. Next in section two, we give methods for finding numerical solutions for equation (B) given above. It is known that finding parametric solutions to biquadratic equations is not easy by conventional method. So the authors have found numerical solutions to equation (A) & (B) using elliptic curve theory.","PeriodicalId":372283,"journal":{"name":"Universal Journal of Applied Mathematics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/UJAM.2016.040201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Different authors have done analysis regarding sums of powers (Ref. no. 1,2 & 3), but systematic approach for solving Diophantine equations having sums of many bi-quadratics equal to a quartic has not been done before. In this paper we give methods for finding numerical solutions to equation (A) given above in section one. Next in section two, we give methods for finding numerical solutions for equation (B) given above. It is known that finding parametric solutions to biquadratic equations is not easy by conventional method. So the authors have found numerical solutions to equation (A) & (B) using elliptic curve theory.
(k+3) & (k+5)双二次方程等于双二次方程(对不同k值)数值解的求解方法
不同的作者对幂和做过分析。1,2和3),但系统的方法来解决丢番图方程有许多双二次求和等于一个四次以前还没有做过。本文给出了第一节给出的方程(A)的数值解的求解方法。接下来,在第二节中,我们给出求上述方程(B)数值解的方法。众所周知,用常规方法求双二次方程的参数解并不容易。因此,作者利用椭圆曲线理论找到了方程(A)和(B)的数值解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信