Beat-ID: identifying music via beat analysis

D. Kirovski, H. Attias
{"title":"Beat-ID: identifying music via beat analysis","authors":"D. Kirovski, H. Attias","doi":"10.1109/MMSP.2002.1203279","DOIUrl":null,"url":null,"abstract":"Music identification is an effective tool that enables multimedia players to extract a distinct statistical digest of the played content, look up into a music database using the extracted unique identifier, and then take advantage of the services available for that particular content. In this paper, we introduce beat-IDs, the first music identification system that creates the digest of the music clip by understanding the basic structure of every musical piece: its beat. A beat-ID is created in two steps: first, the system detects the average beat period of a given music clip using a modified EM algorithm and then, it analyzes the statistical properties of the clip with respect to the detected beats. The extracted 32-byte beat-ID contains two components: the length of the average beat period and a compressed statistical digest of signal's energy distribution in an average beat period. Finally, we introduce an algorithm for matching beat-IDs that quantifies the matching accuracy between two music identifiers using an error analysis. In this paper, the properties of beat-IDs are demonstrated using a relatively small database of audio clips.","PeriodicalId":398813,"journal":{"name":"2002 IEEE Workshop on Multimedia Signal Processing.","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE Workshop on Multimedia Signal Processing.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2002.1203279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Music identification is an effective tool that enables multimedia players to extract a distinct statistical digest of the played content, look up into a music database using the extracted unique identifier, and then take advantage of the services available for that particular content. In this paper, we introduce beat-IDs, the first music identification system that creates the digest of the music clip by understanding the basic structure of every musical piece: its beat. A beat-ID is created in two steps: first, the system detects the average beat period of a given music clip using a modified EM algorithm and then, it analyzes the statistical properties of the clip with respect to the detected beats. The extracted 32-byte beat-ID contains two components: the length of the average beat period and a compressed statistical digest of signal's energy distribution in an average beat period. Finally, we introduce an algorithm for matching beat-IDs that quantifies the matching accuracy between two music identifiers using an error analysis. In this paper, the properties of beat-IDs are demonstrated using a relatively small database of audio clips.
节拍识别:通过节拍分析来识别音乐
音乐识别是一种有效的工具,它使多媒体播放器能够提取播放内容的独特统计摘要,使用提取的唯一标识符查找音乐数据库,然后利用可用于该特定内容的服务。在本文中,我们介绍了beat- id,这是第一个音乐识别系统,它通过理解每个音乐片段的基本结构:节拍来创建音乐片段的摘要。节拍id分两步创建:首先,系统使用改进的EM算法检测给定音乐片段的平均节拍周期,然后,它根据检测到的节拍分析片段的统计属性。提取的32字节的拍id包含两个部分:平均拍周期长度和平均拍周期内信号能量分布的压缩统计摘要。最后,我们介绍了一种匹配节拍id的算法,该算法使用误差分析来量化两个音乐标识符之间的匹配精度。在本文中,使用一个相对较小的音频片段数据库来演示节拍id的属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信