{"title":"StatCC: A statistical cache contention model","authors":"David Eklov, D. Black-Schaffer, Erik Hagersten","doi":"10.1145/1854273.1854347","DOIUrl":null,"url":null,"abstract":"Chip multiprocessor (CMP) architectures sharing on chip resources, such as last-level caches, have recently become a mainstream computing platform. The performance of such systems can vary greatly depending on how co-scheduled applications compete for these shared resources. This work presents StatCC, a simple and efficient model for estimating the contention for shared cache resources between co-scheduled applications on chip multiprocessor architectures.","PeriodicalId":422461,"journal":{"name":"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1854273.1854347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
Chip multiprocessor (CMP) architectures sharing on chip resources, such as last-level caches, have recently become a mainstream computing platform. The performance of such systems can vary greatly depending on how co-scheduled applications compete for these shared resources. This work presents StatCC, a simple and efficient model for estimating the contention for shared cache resources between co-scheduled applications on chip multiprocessor architectures.