A Hybrid Approach for Amazigh-English Machine Translation

I. Taghbalout, Fadoua Ataa-Allah
{"title":"A Hybrid Approach for Amazigh-English Machine Translation","authors":"I. Taghbalout, Fadoua Ataa-Allah","doi":"10.1145/3330089.3330113","DOIUrl":null,"url":null,"abstract":"In this paper, we present our hybrid methodology for building a bidirectional Amazigh-English machine translation. The architecture of the proposed system is based on both Interlingua-Based Machine Translation (IBMT) and Statistical-Based Machine Translation (SBMT) approaches. Amazigh is a less-resourced language. It does not have parallel corpora with enough size. So, using statistical approach for such language will not be a good choice, because this approach requires large parallel corpora to well train probabilistic models, and to ensure a translation of good quality. Since we dispose of an Amazigh IBMT based deconverter, we thought, firstly, to use it in building an Amazigh-English parallel corpus. This latter have been exploited to train the necessary models in SBMT.","PeriodicalId":251275,"journal":{"name":"Proceedings of the 7th International Conference on Software Engineering and New Technologies","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Software Engineering and New Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3330089.3330113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present our hybrid methodology for building a bidirectional Amazigh-English machine translation. The architecture of the proposed system is based on both Interlingua-Based Machine Translation (IBMT) and Statistical-Based Machine Translation (SBMT) approaches. Amazigh is a less-resourced language. It does not have parallel corpora with enough size. So, using statistical approach for such language will not be a good choice, because this approach requires large parallel corpora to well train probabilistic models, and to ensure a translation of good quality. Since we dispose of an Amazigh IBMT based deconverter, we thought, firstly, to use it in building an Amazigh-English parallel corpus. This latter have been exploited to train the necessary models in SBMT.
一种混合的阿奇英机器翻译方法
在本文中,我们提出了我们的混合方法来构建双向阿马齐格-英语机器翻译。该系统的体系结构基于基于语言间的机器翻译(IBMT)和基于统计的机器翻译(SBMT)两种方法。Amazigh是一种资源较少的语言。它没有足够大的平行语料库。因此,对这种语言使用统计方法并不是一个好的选择,因为这种方法需要大量的并行语料库来很好地训练概率模型,并确保高质量的翻译。由于我们处理了一个基于Amazigh IBMT的反转换器,我们认为,首先,将其用于构建Amazigh- english平行语料库。后者已经被用来训练SBMT中必要的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信