Adaptive nonlinear probabilistic filter for Positron Emission Tomography

Musa Alrefaya, H. Sahli
{"title":"Adaptive nonlinear probabilistic filter for Positron Emission Tomography","authors":"Musa Alrefaya, H. Sahli","doi":"10.1109/BIBE.2012.6399753","DOIUrl":null,"url":null,"abstract":"Radiologists face difficulties when reading and interpreting Positron Emission Tomography (PET) images because of the high noise level in the raw-projection data (i.e. the sinogram). The later may lead to erroneous diagnoses. Aiming at finding a suitable denoising technique for PET images, in our first work, we investigated filtering the sinogram with a constraint curvature motion filter where we computed the edge stopping function in terms of edge probability under a marginal prior on the noise free gradient. In this paper, we show that the Chi-square is the appropriate prior for finding the edge probability in the sinogram noise-free gradient. Since the sinogram noise is uncorrelated and follows a Poisson distribution, we then propose an adaptive probabilistic diffusivity function where the edge probability is computed at each pixel. We demonstrate quantitatively and qualitatively through simulations that the performance of the proposed method substantially surpasses that of state-of-art methods, both visually and in terms of statistical measures.","PeriodicalId":330164,"journal":{"name":"2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE)","volume":"539 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2012.6399753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Radiologists face difficulties when reading and interpreting Positron Emission Tomography (PET) images because of the high noise level in the raw-projection data (i.e. the sinogram). The later may lead to erroneous diagnoses. Aiming at finding a suitable denoising technique for PET images, in our first work, we investigated filtering the sinogram with a constraint curvature motion filter where we computed the edge stopping function in terms of edge probability under a marginal prior on the noise free gradient. In this paper, we show that the Chi-square is the appropriate prior for finding the edge probability in the sinogram noise-free gradient. Since the sinogram noise is uncorrelated and follows a Poisson distribution, we then propose an adaptive probabilistic diffusivity function where the edge probability is computed at each pixel. We demonstrate quantitatively and qualitatively through simulations that the performance of the proposed method substantially surpasses that of state-of-art methods, both visually and in terms of statistical measures.
正电子发射层析成像的自适应非线性概率滤波
放射科医生在阅读和解释正电子发射断层扫描(PET)图像时面临困难,因为原始投影数据(即sinogram)中的高噪声水平。后者可能导致错误的诊断。为了找到一种适合PET图像的去噪技术,在我们的第一项工作中,我们研究了用约束曲率运动滤波器滤波sinogram,在无噪声梯度的边缘先验下,我们根据边缘概率计算边缘停止函数。在本文中,我们证明了卡方是在无噪声的正弦图梯度中寻找边缘概率的合适先验。由于正弦图噪声是不相关的,并且遵循泊松分布,因此我们提出了一个自适应概率扩散函数,其中在每个像素处计算边缘概率。我们通过模拟定量和定性地证明,所提出的方法的性能在视觉和统计度量方面都大大超过了最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信