L_1-Regularization of High-Dimensional Time-Series Models with Flexible Innovations

M. C. Medeiros, Eduardo F. Mendes
{"title":"L_1-Regularization of High-Dimensional Time-Series Models with Flexible Innovations","authors":"M. C. Medeiros, Eduardo F. Mendes","doi":"10.2139/ssrn.2626507","DOIUrl":null,"url":null,"abstract":"We study the asymptotic properties of the Adaptive LASSO (adaLASSO) in sparse, high-dimensional, linear time-series models. We assume that both the number of covariates in the model and the number of candidate variables can increase with the sample size (polynomially orgeometrically). In other words, we let the number of candidate variables to be larger than the number of observations. We show the adaLASSO consistently chooses the relevant variables as the number of observations increases (model selection consistency) and has the oracle property, even when the errors are non-Gaussian and conditionally heteroskedastic. This allows the adaLASSO to be applied to a myriad of applications in empirical finance and macroeconomics. A simulation study shows that the method performs well in very general settings with t-distributed and heteroskedastic errors as well with highly correlated regressors. Finally, we consider an application to forecast monthly US inflation with many predictors. The model estimated by the adaLASSO delivers superior forecasts than traditional benchmark competitors such as autoregressive and factor models.","PeriodicalId":418701,"journal":{"name":"ERN: Time-Series Models (Single) (Topic)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Time-Series Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2626507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We study the asymptotic properties of the Adaptive LASSO (adaLASSO) in sparse, high-dimensional, linear time-series models. We assume that both the number of covariates in the model and the number of candidate variables can increase with the sample size (polynomially orgeometrically). In other words, we let the number of candidate variables to be larger than the number of observations. We show the adaLASSO consistently chooses the relevant variables as the number of observations increases (model selection consistency) and has the oracle property, even when the errors are non-Gaussian and conditionally heteroskedastic. This allows the adaLASSO to be applied to a myriad of applications in empirical finance and macroeconomics. A simulation study shows that the method performs well in very general settings with t-distributed and heteroskedastic errors as well with highly correlated regressors. Finally, we consider an application to forecast monthly US inflation with many predictors. The model estimated by the adaLASSO delivers superior forecasts than traditional benchmark competitors such as autoregressive and factor models.
具有柔性创新的高维时间序列模型的l_1 -正则化
研究了稀疏、高维、线性时间序列模型中自适应LASSO (adaLASSO)的渐近性质。我们假设模型中协变量的数量和候选变量的数量都可以随着样本量的增加而增加(多项式或几何)。换句话说,我们让候选变量的数量大于观测值的数量。我们表明,随着观测数量的增加,adaLASSO始终如一地选择相关变量(模型选择一致性),并且具有oracle属性,即使误差是非高斯的和条件异方差的。这使得adaLASSO可以应用于经验金融学和宏观经济学的无数应用。仿真研究表明,该方法在具有t分布和异方差误差以及高度相关回归量的非常一般的设置中表现良好。最后,我们考虑一个应用程序,用许多预测器来预测美国每月的通货膨胀。adaLASSO估计的模型比传统的基准竞争对手(如自回归模型和因子模型)提供了更好的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信