Implementasi Fuzzy C-Means dan Possibilistik C-Means Pada Data Performance Mahasiswa

Gadis Retno Apsari, Mohammad Syaiful Pradana, N. Chandra
{"title":"Implementasi Fuzzy C-Means dan Possibilistik C-Means Pada Data Performance Mahasiswa","authors":"Gadis Retno Apsari, Mohammad Syaiful Pradana, N. Chandra","doi":"10.52166/ujmc.v6i2.2392","DOIUrl":null,"url":null,"abstract":"Students are the most important component in a university, especially private universities especially Universitas Islam Darul ‘ulum (Unisda) Lamongan. One of the most important roles of students for higher education is achievement. This study aims to determine the role of Fuzzy Clustering in classifying student performance data. The data includes GPA (Grade Point Average), ECCU (Extra-Curricular Credit Unit), attendance, and students' willingness to learn. So that groups of students who have the potential to have achievements can be identified. In this case, the grouping of student performance data uses Fuzzy Clustering by applying the Fuzzy C-Means (FCM) and Possibilistic C-Means (PCM) algorithms with the help of Matlab. In the FCM algorithm, the membership degree is updated so as to produce a minimum objective function value. Meanwhile, the PCM algorithm uses a T matrix, which shows the peculiarities of the data which are also based on minimizing the objective function.","PeriodicalId":262941,"journal":{"name":"Unisda Journal of Mathematics and Computer Science (UJMC)","volume":"163 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unisda Journal of Mathematics and Computer Science (UJMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52166/ujmc.v6i2.2392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Students are the most important component in a university, especially private universities especially Universitas Islam Darul ‘ulum (Unisda) Lamongan. One of the most important roles of students for higher education is achievement. This study aims to determine the role of Fuzzy Clustering in classifying student performance data. The data includes GPA (Grade Point Average), ECCU (Extra-Curricular Credit Unit), attendance, and students' willingness to learn. So that groups of students who have the potential to have achievements can be identified. In this case, the grouping of student performance data uses Fuzzy Clustering by applying the Fuzzy C-Means (FCM) and Possibilistic C-Means (PCM) algorithms with the help of Matlab. In the FCM algorithm, the membership degree is updated so as to produce a minimum objective function value. Meanwhile, the PCM algorithm uses a T matrix, which shows the peculiarities of the data which are also based on minimizing the objective function.
实现模糊c -均值和可能性c -均值数据性能模型
学生是大学最重要的组成部分,特别是私立大学,特别是Universitas Islam Darul ' ulum (Unisda) Lamongan。对于高等教育来说,学生最重要的角色之一就是成就。本研究旨在确定模糊聚类在学生成绩数据分类中的作用。这些数据包括GPA(平均成绩)、ECCU(课外学分单位)、出勤率和学生的学习意愿。这样就可以识别出有潜力取得成就的学生群体。在这种情况下,学生成绩数据的分组使用模糊聚类,在Matlab的帮助下应用模糊c均值(FCM)和可能性c均值(PCM)算法。在FCM算法中,更新隶属度以产生最小的目标函数值。同时,PCM算法使用T矩阵来显示数据的特性,这也是基于最小化目标函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信