Workload forecasting framework for applications in cloud

Shuang Jiang, Hao-peng Chen, Fei Hu
{"title":"Workload forecasting framework for applications in cloud","authors":"Shuang Jiang, Hao-peng Chen, Fei Hu","doi":"10.1109/CCIOT.2014.7062501","DOIUrl":null,"url":null,"abstract":"With the development of cloud computing technics, an increasing number of applications prefer to be deployed in cloud. Load balancing becomes the key technicfor cloud provider to control the resources and cost. But using load balancing with real time data cannot react in time towards workload peak or valley. Thus, workload forecasting is presented to let the cloud provider to get ready for a possible workload change. There are already many kinds of predicting methods. In this article, we study the workload of applications in cloud and propose a workload forecasting framework. This framework monitors workloads of applications in real time, processes the data, and provides feedback of the predicted workload value according to historical data,guiding the cloudprovider to allocate resources.","PeriodicalId":255477,"journal":{"name":"Proceedings of 2014 International Conference on Cloud Computing and Internet of Things","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2014 International Conference on Cloud Computing and Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIOT.2014.7062501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the development of cloud computing technics, an increasing number of applications prefer to be deployed in cloud. Load balancing becomes the key technicfor cloud provider to control the resources and cost. But using load balancing with real time data cannot react in time towards workload peak or valley. Thus, workload forecasting is presented to let the cloud provider to get ready for a possible workload change. There are already many kinds of predicting methods. In this article, we study the workload of applications in cloud and propose a workload forecasting framework. This framework monitors workloads of applications in real time, processes the data, and provides feedback of the predicted workload value according to historical data,guiding the cloudprovider to allocate resources.
用于云应用程序的工作负载预测框架
随着云计算技术的发展,越来越多的应用程序倾向于在云中部署。负载均衡成为云提供商控制资源和成本的关键技术。但是,使用实时数据的负载均衡无法及时响应工作负载的峰值或低谷。因此,提供工作负载预测是为了让云提供商为可能的工作负载更改做好准备。预测方法已经有很多种了。本文研究了云环境下应用程序的工作负载,提出了一个工作负载预测框架。该框架实时监控应用程序的工作负载,处理数据,并根据历史数据提供预测工作负载值的反馈,指导云提供商分配资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信