Automatically marking object regions based on tagged images

Shi-Chao Kan, Yigang Cen, Yanhong Wang, Y. Cen, Shaohai Hu
{"title":"Automatically marking object regions based on tagged images","authors":"Shi-Chao Kan, Yigang Cen, Yanhong Wang, Y. Cen, Shaohai Hu","doi":"10.1109/ISPACS.2017.8266532","DOIUrl":null,"url":null,"abstract":"The performance of image classification can be greatly improved by suitable object proposals. The mainstream framework of object proposals (e.g. Faster R-CNN) needs to manually label every bounding box of each object on an image in the training or fine-tuning stage, which is a time consuming task. Thus, we propose an idea that object regions in each image can be generated firstly by a pre-trained Faster R-CNN based on other complete tagging data set (e.g. PASCAL VOC 2007). Then a fine-tuned convolutional neural network (CNN) on the current data set can be used to mark the object region automatically. Finally, these labeled object regions can be used to fine-tune the Faster R-CNN and CNN. In the animal classification data set of BOT 2016, experimental results show that our proposed method can greatly boost the average accuracy of image classification.","PeriodicalId":166414,"journal":{"name":"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2017.8266532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of image classification can be greatly improved by suitable object proposals. The mainstream framework of object proposals (e.g. Faster R-CNN) needs to manually label every bounding box of each object on an image in the training or fine-tuning stage, which is a time consuming task. Thus, we propose an idea that object regions in each image can be generated firstly by a pre-trained Faster R-CNN based on other complete tagging data set (e.g. PASCAL VOC 2007). Then a fine-tuned convolutional neural network (CNN) on the current data set can be used to mark the object region automatically. Finally, these labeled object regions can be used to fine-tune the Faster R-CNN and CNN. In the animal classification data set of BOT 2016, experimental results show that our proposed method can greatly boost the average accuracy of image classification.
基于标记图像的对象区域自动标记
通过适当的目标建议,可以大大提高图像分类的性能。对象建议的主流框架(例如Faster R-CNN)需要在训练或微调阶段手动标记图像上每个对象的每个边界框,这是一项耗时的任务。因此,我们提出了一个想法,即每个图像中的目标区域可以首先由基于其他完整标记数据集(例如PASCAL VOC 2007)的预训练的Faster R-CNN生成。然后在当前数据集上使用微调卷积神经网络(CNN)自动标记目标区域。最后,这些标记的对象区域可以用来微调Faster R-CNN和CNN。在BOT 2016的动物分类数据集中,实验结果表明,我们提出的方法可以大大提高图像分类的平均准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信