Scalable and Cost-effective Serverless Architecture for Information Extraction Workflows

Dheeraj Chahal, S. Palepu, Rekha Singhal
{"title":"Scalable and Cost-effective Serverless Architecture for Information Extraction Workflows","authors":"Dheeraj Chahal, S. Palepu, Rekha Singhal","doi":"10.1145/3526060.3535458","DOIUrl":null,"url":null,"abstract":"Information extraction from an image or scanned document is a complex and challenging process since it involves recognizing various visual structures such as tables, boxes, logos, text, charts, etc. Hence, the content extraction applications contain a pipeline of multiple computer vision algorithms, APIs, and models. Deploying such applications for document processing requires a resilient system to deliver high performance. Such applications can be deployed on cloud to leverage the flexible infrastructure and multiple supporting services available there. In this paper, we discuss a scalable and high performance architecture using a serverless platform for deploying information extraction workflows consisting of multiple APIs and computer vision models. Our experiments show that the use of a serverless platform results in a scalable, cost-effective, and low latency deployment of such workflows. Moreover, we discuss the performance and cost trade-offs while choosing cloud services and their configuration. We also show that the use of workload characterization-based performance and cost models to find the optimal serverless instance configuration results in a significant deployment cost reduction.","PeriodicalId":223581,"journal":{"name":"Proceedings of the 2nd Workshop on High Performance Serverless Computing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Workshop on High Performance Serverless Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526060.3535458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Information extraction from an image or scanned document is a complex and challenging process since it involves recognizing various visual structures such as tables, boxes, logos, text, charts, etc. Hence, the content extraction applications contain a pipeline of multiple computer vision algorithms, APIs, and models. Deploying such applications for document processing requires a resilient system to deliver high performance. Such applications can be deployed on cloud to leverage the flexible infrastructure and multiple supporting services available there. In this paper, we discuss a scalable and high performance architecture using a serverless platform for deploying information extraction workflows consisting of multiple APIs and computer vision models. Our experiments show that the use of a serverless platform results in a scalable, cost-effective, and low latency deployment of such workflows. Moreover, we discuss the performance and cost trade-offs while choosing cloud services and their configuration. We also show that the use of workload characterization-based performance and cost models to find the optimal serverless instance configuration results in a significant deployment cost reduction.
用于信息提取工作流的可扩展且经济高效的无服务器架构
从图像或扫描文档中提取信息是一个复杂而具有挑战性的过程,因为它涉及识别各种视觉结构,如表格、框、徽标、文本、图表等。因此,内容提取应用程序包含多种计算机视觉算法、api和模型的管道。为文档处理部署这样的应用程序需要一个弹性系统来提供高性能。这样的应用程序可以部署在云上,以利用灵活的基础设施和多种可用的支持服务。在本文中,我们讨论了一个可扩展的高性能架构,使用无服务器平台来部署由多个api和计算机视觉模型组成的信息提取工作流。我们的实验表明,使用无服务器平台可以实现此类工作流的可伸缩、经济高效和低延迟部署。此外,我们还讨论了在选择云服务及其配置时的性能和成本权衡。我们还展示了使用基于工作负载特征的性能和成本模型来找到最佳的无服务器实例配置可以显著降低部署成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信