Multi mode projectile tracking with Marginalized Particle Filter

Ozan Ozgun Bilgin, M. Demirekler
{"title":"Multi mode projectile tracking with Marginalized Particle Filter","authors":"Ozan Ozgun Bilgin, M. Demirekler","doi":"10.1109/RADARCONF.2015.7411884","DOIUrl":null,"url":null,"abstract":"In this study, dynamic models for thrusting and ballistic flight modes of multi mode projectile are obtained and Marginalization method is applied by separation of the linear and nonlinear parts of state space model. In Marginalized Particle Filter (MPF), dimension of the nonlinear system is reduced so that the model can be utilized to obtain better estimates of the state using the same number of particles as that of standard particle filter. The Extended Kalman Filter (EKF), the Particle Filter (PF) and the Marginalized Particle Filter (MPF) are compared by their RMS errors in position and velocity estimations obtained by Monte Carlo simulations. In general, EKF has the best performance on position estimation and MPF has the best performance on velocity estimation.","PeriodicalId":267194,"journal":{"name":"2015 IEEE Radar Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADARCONF.2015.7411884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, dynamic models for thrusting and ballistic flight modes of multi mode projectile are obtained and Marginalization method is applied by separation of the linear and nonlinear parts of state space model. In Marginalized Particle Filter (MPF), dimension of the nonlinear system is reduced so that the model can be utilized to obtain better estimates of the state using the same number of particles as that of standard particle filter. The Extended Kalman Filter (EKF), the Particle Filter (PF) and the Marginalized Particle Filter (MPF) are compared by their RMS errors in position and velocity estimations obtained by Monte Carlo simulations. In general, EKF has the best performance on position estimation and MPF has the best performance on velocity estimation.
基于边缘粒子滤波的多模弹丸跟踪
本文建立了多模弹丸的推力模式和弹道飞行模式的动力学模型,并将状态空间模型的线性部分和非线性部分分离,采用边缘化方法。在边缘粒子滤波(MPF)中,对非线性系统的维数进行了降维处理,使得该模型在使用与标准粒子滤波相同的粒子数的情况下,可以得到更好的状态估计。通过蒙特卡罗仿真,比较了扩展卡尔曼滤波器(EKF)、粒子滤波器(PF)和边缘粒子滤波器(MPF)在位置和速度估计中的均方根误差。一般情况下,EKF在位置估计方面性能最好,MPF在速度估计方面性能最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信