Distribution-Driven, Embedded Synthetic Data Generation System and Tool for RDBMS

Joseph W. Hu, Ivan T. Bowman, A. Nica, Anil K. Goel
{"title":"Distribution-Driven, Embedded Synthetic Data Generation System and Tool for RDBMS","authors":"Joseph W. Hu, Ivan T. Bowman, A. Nica, Anil K. Goel","doi":"10.1109/ICDEW.2019.00-25","DOIUrl":null,"url":null,"abstract":"Many self-managing relational database management systems (RDBMS) need to programmatically generate synthetic data to train machine learning models. This paper proposes the concept of shadow database and a framework to derive shadow database from production database that matches distribution properties of source data. Moreover, we have designed and implemented an embedded synthetic data generation tool that takes data distribution profile as input and generates a shadow database according to histograms of source data. The distribution profile is passed into the tool either through an export-import mechanism or as a JSON string. The shadow database can scale to be larger or smaller than the original database and serve as a testbed to train learning models. Unlike most other data generation tools, our tool is implemented as SQL procedures that can be embedded in the underlying RDBMS.","PeriodicalId":186190,"journal":{"name":"2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2019.00-25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many self-managing relational database management systems (RDBMS) need to programmatically generate synthetic data to train machine learning models. This paper proposes the concept of shadow database and a framework to derive shadow database from production database that matches distribution properties of source data. Moreover, we have designed and implemented an embedded synthetic data generation tool that takes data distribution profile as input and generates a shadow database according to histograms of source data. The distribution profile is passed into the tool either through an export-import mechanism or as a JSON string. The shadow database can scale to be larger or smaller than the original database and serve as a testbed to train learning models. Unlike most other data generation tools, our tool is implemented as SQL procedures that can be embedded in the underlying RDBMS.
分布驱动的嵌入式RDBMS合成数据生成系统和工具
许多自管理关系数据库管理系统(RDBMS)需要以编程方式生成合成数据来训练机器学习模型。本文提出了影子数据库的概念,并提出了从生产数据库中派生出符合源数据分布特性的影子数据库的框架。此外,我们设计并实现了一个嵌入式合成数据生成工具,该工具以数据分布概况为输入,根据源数据的直方图生成影子数据库。分发配置文件通过导出-导入机制或作为JSON字符串传递到工具中。影子数据库可以扩展到比原始数据库更大或更小,并作为训练学习模型的测试平台。与大多数其他数据生成工具不同,我们的工具是作为SQL过程实现的,可以嵌入到底层RDBMS中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信