Intelligent Techniques for Configuration Knowledge Evolution

A. Felfernig, Stefan Reiterer, Martin Stettinger, J. Tiihonen
{"title":"Intelligent Techniques for Configuration Knowledge Evolution","authors":"A. Felfernig, Stefan Reiterer, Martin Stettinger, J. Tiihonen","doi":"10.1145/2701319.2701320","DOIUrl":null,"url":null,"abstract":"Automated testing and debugging of knowledge bases (such as configuration knowledge bases and feature models) is an important contribution to manage knowledge evolution efficiently. However, existing approaches rely on the assumption of consistent test suites which are always kept up-to-date within the scope of different knowledge base maintenance cycles. In this paper we introduce diagnosis techniques that actively guide stakeholders (knowledge engineers and domain experts) in the process of testing and debugging knowledge bases. These techniques take into account faulty test cases and constraints and recommend diagnoses which are the source of a given inconsistency.","PeriodicalId":232045,"journal":{"name":"Proceedings of the 9th International Workshop on Variability Modelling of Software-Intensive Systems","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Workshop on Variability Modelling of Software-Intensive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2701319.2701320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Automated testing and debugging of knowledge bases (such as configuration knowledge bases and feature models) is an important contribution to manage knowledge evolution efficiently. However, existing approaches rely on the assumption of consistent test suites which are always kept up-to-date within the scope of different knowledge base maintenance cycles. In this paper we introduce diagnosis techniques that actively guide stakeholders (knowledge engineers and domain experts) in the process of testing and debugging knowledge bases. These techniques take into account faulty test cases and constraints and recommend diagnoses which are the source of a given inconsistency.
配置知识演化的智能技术
知识库(如配置知识库和特征模型)的自动化测试和调试是有效管理知识演进的重要贡献。然而,现有的方法依赖于一致的测试套件的假设,这些测试套件总是在不同的知识库维护周期范围内保持最新。本文介绍了在知识库测试和调试过程中主动引导利益相关者(知识工程师和领域专家)的诊断技术。这些技术考虑到错误的测试用例和约束,并建议诊断哪些是给定不一致的来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信