User-annotated microtext data for modeling and analyzing users' sociolinguistic characteristics and age grading

N. Moseley, Cecilia Ovesdotter Alm, M. Rege
{"title":"User-annotated microtext data for modeling and analyzing users' sociolinguistic characteristics and age grading","authors":"N. Moseley, Cecilia Ovesdotter Alm, M. Rege","doi":"10.1109/RCIS.2014.6861046","DOIUrl":null,"url":null,"abstract":"Information from Twitter messages have become an important area for research in computational analysis of natural language. As yet, much latent user attribute analysis on Twitter is unexplored. One reason is that only few latent attributes are explicitly defined by users on Twitter. This work presents and analyzes a data set annotated by Twitter users themselves for age and other useful attributes for use in latent attribute inference applications. We report on statistical analysis of the collected latent attributes and tweet information using association mining.","PeriodicalId":288073,"journal":{"name":"2014 IEEE Eighth International Conference on Research Challenges in Information Science (RCIS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Eighth International Conference on Research Challenges in Information Science (RCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCIS.2014.6861046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Information from Twitter messages have become an important area for research in computational analysis of natural language. As yet, much latent user attribute analysis on Twitter is unexplored. One reason is that only few latent attributes are explicitly defined by users on Twitter. This work presents and analyzes a data set annotated by Twitter users themselves for age and other useful attributes for use in latent attribute inference applications. We report on statistical analysis of the collected latent attributes and tweet information using association mining.
用户标注的微文本数据,用于建模和分析用户的社会语言特征和年龄分级
推特信息已经成为自然语言计算分析研究的一个重要领域。到目前为止,Twitter上许多潜在的用户属性分析还没有得到开发。原因之一是Twitter上只有少数潜在属性是由用户明确定义的。这项工作提出并分析了一个由Twitter用户自己标注的数据集,用于潜在属性推断应用程序的年龄和其他有用属性。我们报告了使用关联挖掘对收集到的潜在属性和tweet信息进行统计分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信