Effective test data generation using probabilistic networks

Saeed Parsa, Farid Feyzi
{"title":"Effective test data generation using probabilistic networks","authors":"Saeed Parsa, Farid Feyzi","doi":"10.1504/ijcsm.2020.10029250","DOIUrl":null,"url":null,"abstract":"This paper presents a novel test data generation method called Bayes-TDG. It is based on principles of Bayesian networks (BNs) and provides the possibility of making inference from probabilistic data in the model to increase the prime path coverage ratio (PPCR) for a given program under test (PUT). In this regard, a new program structure-based probabilistic network, TDG-NET, is proposed that is capable of modelling the conditional dependencies among the program basic blocks (BBs) in one hand and conditional dependencies of the transitions between its BBs and input parameters on the other hand. To achieve failure-detection effectiveness, we propose a path selection strategy that works based on the predicted outcome of generated test cases. So, we mitigate the need for a human oracle, and the generated test suite could be directly used in fault localisation. Several experiments are conducted to evaluate the performance of Bayes-TDG. The results reveal that the method is promising and the generated test suite could be quite effective.","PeriodicalId":399731,"journal":{"name":"Int. J. Comput. Sci. Math.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcsm.2020.10029250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel test data generation method called Bayes-TDG. It is based on principles of Bayesian networks (BNs) and provides the possibility of making inference from probabilistic data in the model to increase the prime path coverage ratio (PPCR) for a given program under test (PUT). In this regard, a new program structure-based probabilistic network, TDG-NET, is proposed that is capable of modelling the conditional dependencies among the program basic blocks (BBs) in one hand and conditional dependencies of the transitions between its BBs and input parameters on the other hand. To achieve failure-detection effectiveness, we propose a path selection strategy that works based on the predicted outcome of generated test cases. So, we mitigate the need for a human oracle, and the generated test suite could be directly used in fault localisation. Several experiments are conducted to evaluate the performance of Bayes-TDG. The results reveal that the method is promising and the generated test suite could be quite effective.
使用概率网络有效地生成测试数据
本文提出了一种新的测试数据生成方法——Bayes-TDG。它基于贝叶斯网络(BNs)的原理,并提供了从模型中的概率数据进行推理的可能性,以提高给定被测程序(PUT)的主要路径覆盖率(PPCR)。为此,提出了一种新的基于程序结构的概率网络TDG-NET,该网络一方面能够模拟程序基本块之间的条件依赖关系,另一方面能够模拟程序基本块与输入参数之间转换的条件依赖关系。为了实现故障检测的有效性,我们提出了一种基于生成的测试用例的预测结果的路径选择策略。因此,我们减少了对人工oracle的需求,并且生成的测试套件可以直接用于故障定位。通过实验对贝叶斯- tdg的性能进行了评价。结果表明,该方法是有前途的,所生成的测试套件是相当有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信