A hybrid registration approach combining SLAM and elastic matching for automatic side-scan sonar mosaic

Loic Bernicola, D. Guériot, J. Le Caillec
{"title":"A hybrid registration approach combining SLAM and elastic matching for automatic side-scan sonar mosaic","authors":"Loic Bernicola, D. Guériot, J. Le Caillec","doi":"10.1109/OCEANS.2014.7003160","DOIUrl":null,"url":null,"abstract":"This paper introduces a hybrid registration approach to build mosaics from side-scan sonar images. Due to specific acquisition procedure during surveys, standard SLAM techniques may not be robust enough to globally take into account a complete survey and correct sensor trajectories in order to properly georeference every pixel from all these images. iSAM algorithm has been fed with real side-scan images and shows interesting capabilities to produce corrected sensor trajectories allowing relevant coarse image registration, based on landmarks extraction and pairing. These trajectories will then guide a block-matching procedure that will refine these trajectories by finely matching only sonar images relevant areas.","PeriodicalId":368693,"journal":{"name":"2014 Oceans - St. John's","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Oceans - St. John's","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2014.7003160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper introduces a hybrid registration approach to build mosaics from side-scan sonar images. Due to specific acquisition procedure during surveys, standard SLAM techniques may not be robust enough to globally take into account a complete survey and correct sensor trajectories in order to properly georeference every pixel from all these images. iSAM algorithm has been fed with real side-scan images and shows interesting capabilities to produce corrected sensor trajectories allowing relevant coarse image registration, based on landmarks extraction and pairing. These trajectories will then guide a block-matching procedure that will refine these trajectories by finely matching only sonar images relevant areas.
一种结合SLAM和弹性匹配的侧扫声纳自动拼接混合配准方法
本文介绍了一种混合配准方法,用于侧扫声纳图像的拼接。由于调查过程中特定的采集程序,标准SLAM技术可能不够强大,无法全面考虑完整的调查和正确的传感器轨迹,以便正确地参考所有这些图像中的每个像素。iSAM算法使用了真实的侧面扫描图像,并显示出基于地标提取和配对产生校正传感器轨迹的有趣功能,从而允许相关的粗图像配准。然后,这些轨迹将指导一个块匹配程序,该程序将通过精细匹配声纳图像的相关区域来细化这些轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信