An uncertain data model construction method based on nonparametric estimation

Yuan Cheng, Ronghua Chi, Suxia Zhu
{"title":"An uncertain data model construction method based on nonparametric estimation","authors":"Yuan Cheng, Ronghua Chi, Suxia Zhu","doi":"10.1109/ICEICT.2016.7879722","DOIUrl":null,"url":null,"abstract":"Uncertain data may exist in many application fields, due to the inaccurate raw data, the use of coarse-grained data set, for the purposes of privacy protection, and the data integration etc. The original features of the data may be changed or ignored if the uncertainties were mishandled. Therefore the effective management and analysis of uncertain objects should rely on an appropriate uncertain data model depicting the characteristic of uncertainties. For the uncertainties in the values of data attributes, this paper proposed an uncertain data model construction method based on nonparametric estimation, which can represent the uncertainty distribution characteristic efficiently without assuming the data distribution. And the effectiveness of the proposed algorithm was verified through the experiments on UCI and real data sets.","PeriodicalId":224387,"journal":{"name":"2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEICT.2016.7879722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Uncertain data may exist in many application fields, due to the inaccurate raw data, the use of coarse-grained data set, for the purposes of privacy protection, and the data integration etc. The original features of the data may be changed or ignored if the uncertainties were mishandled. Therefore the effective management and analysis of uncertain objects should rely on an appropriate uncertain data model depicting the characteristic of uncertainties. For the uncertainties in the values of data attributes, this paper proposed an uncertain data model construction method based on nonparametric estimation, which can represent the uncertainty distribution characteristic efficiently without assuming the data distribution. And the effectiveness of the proposed algorithm was verified through the experiments on UCI and real data sets.
一种基于非参数估计的不确定数据模型构建方法
由于原始数据不准确、使用粗粒度数据集、出于隐私保护和数据集成等目的,在许多应用领域都可能存在不确定性数据。如果不确定性处理不当,可能会改变或忽略数据的原始特征。因此,要对不确定对象进行有效的管理和分析,就必须建立一个合适的不确定数据模型来描述不确定性的特征。针对数据属性值的不确定性,提出了一种基于非参数估计的不确定数据模型构建方法,该方法可以在不假设数据分布的情况下有效地表示不确定性分布特征。并通过在UCI和真实数据集上的实验验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信