{"title":"Evaluation of metrological characteristics of spectral analysis method for determining erythrocyte morphology","authors":"Y. Sokol, K. Kolisnyk, T. V. Bernads’ka","doi":"10.15222/tkea2021.3-4.45","DOIUrl":null,"url":null,"abstract":"Spectral photometry is currently widely used for quantitative and qualitative analysis of biological molecules in medical biology. The method is based on the ability of molecules to absorb electromagnetic radiation. Modern clinical laboratory diagnostics extensively uses optical methods of analysis that rely on these physical properties of semitransparent objects, such as blood components. Knowing the absorption spectra of blood and its components, it is possible to quantify the concentration of all the components by solving the mathematical system of equations corresponding to these spectra. However, the existing methods of optical analysis of erythrocytes do not allow quantifying their geometric parameters, which may also indicate certain diagnostic signs and be used to analyze the clinical condition of the patient's body.\nThe aim of this work is to evaluate the metrological characteristics of the newly developed method of determining the geometric parameters of erythrocytes, which combines spectral analysis and double annealing.\nThe input data for the 3D imaging of erythrocytes were taken from the images of the sample both made in natural light and illuminated by a coherent light source with different wavelengths. The latter, after some additional image correlation, increases the reliability of the result. The calculation results on the errors and the measuring channel resolution of the digital interference microscope indicate an acceptable accuracy of the method. The accuracy of the three-dimensional image obtained by the proposed method is more than 20% higher than that of other known methods. This allows determining the informative geometric parameters of the structure of erythrocytes more accurately and using them to obtain additional clinical diagnostic characteristics of the patient's body.","PeriodicalId":231412,"journal":{"name":"Технология и конструирование в электронной аппаратуре","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Технология и конструирование в электронной аппаратуре","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15222/tkea2021.3-4.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Spectral photometry is currently widely used for quantitative and qualitative analysis of biological molecules in medical biology. The method is based on the ability of molecules to absorb electromagnetic radiation. Modern clinical laboratory diagnostics extensively uses optical methods of analysis that rely on these physical properties of semitransparent objects, such as blood components. Knowing the absorption spectra of blood and its components, it is possible to quantify the concentration of all the components by solving the mathematical system of equations corresponding to these spectra. However, the existing methods of optical analysis of erythrocytes do not allow quantifying their geometric parameters, which may also indicate certain diagnostic signs and be used to analyze the clinical condition of the patient's body.
The aim of this work is to evaluate the metrological characteristics of the newly developed method of determining the geometric parameters of erythrocytes, which combines spectral analysis and double annealing.
The input data for the 3D imaging of erythrocytes were taken from the images of the sample both made in natural light and illuminated by a coherent light source with different wavelengths. The latter, after some additional image correlation, increases the reliability of the result. The calculation results on the errors and the measuring channel resolution of the digital interference microscope indicate an acceptable accuracy of the method. The accuracy of the three-dimensional image obtained by the proposed method is more than 20% higher than that of other known methods. This allows determining the informative geometric parameters of the structure of erythrocytes more accurately and using them to obtain additional clinical diagnostic characteristics of the patient's body.