Categorization of product pages depending on information on the Web

Naoto Sato, Kanako Komiya, Koji Fujimoto, Y. Kotani
{"title":"Categorization of product pages depending on information on the Web","authors":"Naoto Sato, Kanako Komiya, Koji Fujimoto, Y. Kotani","doi":"10.1109/JCSSE.2011.5930153","DOIUrl":null,"url":null,"abstract":"In this paper, the authors categorize product pages on the Web depending on their information. We used naive Bayes and the complement naive Bayes classifier, and tried four kinds of features to categorize them: all the words of the titles of the product pages, the nouns extracted from the titles, all the words of the titles and the descriptions of the product pages, and the nouns extracted from them. The experiments show that the product pages can be classified most correctly depending on only the nouns of the titles of the product pages. Moreover the complement naive Bayes classifier outperformed the naive Bayes classifier.","PeriodicalId":287775,"journal":{"name":"2011 Eighth International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Eighth International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2011.5930153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, the authors categorize product pages on the Web depending on their information. We used naive Bayes and the complement naive Bayes classifier, and tried four kinds of features to categorize them: all the words of the titles of the product pages, the nouns extracted from the titles, all the words of the titles and the descriptions of the product pages, and the nouns extracted from them. The experiments show that the product pages can be classified most correctly depending on only the nouns of the titles of the product pages. Moreover the complement naive Bayes classifier outperformed the naive Bayes classifier.
根据Web上的信息对产品页面进行分类
在本文中,作者根据其信息对Web上的产品页面进行了分类。我们使用朴素贝叶斯和补充朴素贝叶斯分类器,并尝试了四种特征对它们进行分类:产品页面标题的所有单词、标题中提取的名词、标题和产品页面描述的所有单词、标题和描述中提取的名词。实验表明,仅依靠产品页面标题中的名词就可以对产品页面进行最正确的分类。此外,补充朴素贝叶斯分类器优于朴素贝叶斯分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信