Maximizing Efficiency: A Comparative Study of SOMA Algorithm Variants and Constraint Handling Methods for Time Delay System Optimization

R. Šenkeřík, T. Kadavy, Peter Janků, Michal Pluhacek, Hubert Guzowski, L. Pekař, R. Matušů, Adam Viktorin, M. Smółka, A. Byrski, Zuzana Kominkova Oplatkova
{"title":"Maximizing Efficiency: A Comparative Study of SOMA Algorithm Variants and Constraint Handling Methods for Time Delay System Optimization","authors":"R. Šenkeřík, T. Kadavy, Peter Janků, Michal Pluhacek, Hubert Guzowski, L. Pekař, R. Matušů, Adam Viktorin, M. Smółka, A. Byrski, Zuzana Kominkova Oplatkova","doi":"10.1145/3583133.3596417","DOIUrl":null,"url":null,"abstract":"This paper presents an experimental study that compares four adaptive variants of the self-organizing migrating algorithm (SOMA). Each variant uses three different constraint handling methods for the optimization of a time delay system model. The paper emphasizes the importance of metaheuristic algorithms in control engineering for time-delayed systems to develop more effective and efficient control strategies and precise model identifications. The study includes a detailed description of the selected variants of the SOMA and the adaptive mechanisms used. A complex workflow of experiments is described, and the results and discussion are presented. The experimental results highlight the effectiveness of the SOMA variants with specific constraint handling methods for time delay system optimization. Overall, this study contributes to the understanding of the challenges and advantages of using metaheuristic algorithms in control engineering for time delay systems. The results provide valuable insights into the performance of the SOMA variants and can help guide the selection of appropriate constraint handling methods and the adaptive mechanisms of metaheuristics.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3596417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an experimental study that compares four adaptive variants of the self-organizing migrating algorithm (SOMA). Each variant uses three different constraint handling methods for the optimization of a time delay system model. The paper emphasizes the importance of metaheuristic algorithms in control engineering for time-delayed systems to develop more effective and efficient control strategies and precise model identifications. The study includes a detailed description of the selected variants of the SOMA and the adaptive mechanisms used. A complex workflow of experiments is described, and the results and discussion are presented. The experimental results highlight the effectiveness of the SOMA variants with specific constraint handling methods for time delay system optimization. Overall, this study contributes to the understanding of the challenges and advantages of using metaheuristic algorithms in control engineering for time delay systems. The results provide valuable insights into the performance of the SOMA variants and can help guide the selection of appropriate constraint handling methods and the adaptive mechanisms of metaheuristics.
效率最大化:时滞系统优化的SOMA算法变体与约束处理方法的比较研究
本文对自组织迁移算法(SOMA)的四种自适应变体进行了实验研究。每个变量使用三种不同的约束处理方法来优化时滞系统模型。本文强调了元启发式算法在时滞系统控制工程中的重要性,以制定更有效和高效的控制策略和精确的模型识别。该研究包括对SOMA的选定变体和所使用的自适应机制的详细描述。描述了一个复杂的实验流程,并给出了结果和讨论。实验结果表明,具有特定约束处理方法的SOMA变量在时滞系统优化中的有效性。总的来说,这项研究有助于理解在时滞系统控制工程中使用元启发式算法的挑战和优势。这些结果为SOMA变体的性能提供了有价值的见解,并有助于指导选择适当的约束处理方法和元启发式的自适应机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信