Portfoliomodell zur Elimination des systematischen Risikos (Optimization of Portfolios for Eliminating Systematic Risk)

Hellmut D. Scholtz
{"title":"Portfoliomodell zur Elimination des systematischen Risikos (Optimization of Portfolios for Eliminating Systematic Risk)","authors":"Hellmut D. Scholtz","doi":"10.2139/ssrn.2523505","DOIUrl":null,"url":null,"abstract":"German Abstract: Angesichts der politischen und wirtschaftlichen Turbulenzen am Aktienmarkt stellt sich die Frage, ob es trotz umfassender Portfolioliteratur neuere Wege gibt, die Problematik des systematischen Risikos bei Aktienanlagen wesentlich zu mindern. Die folgende Arbeit leitet ein hierfur geeignetes und einfach zu handhabendes Portfoliomodell ab. Damit konnen die Auswirkungen fallender Kurse des Marktes in einem optimierten Portfoliomix eliminiert werden. Die These von der Nicht-Diversifizierbarkeit des systematischen Risikos scheint insoweit relativiert.English Abstract: The possibility to minimize volatility of the systematic risk while maximizing returns, is the use of an optimized buy long/sell short strategy that takes into account, that the market model is kinky. The equation of the market model – including a beta plus for increasing markets and a beta minus for descending markets – seems to be more qualified for this reason. The following approach shows the derivation of equations for an optimal configuration of a mix of stocks. These equations and some examples and figures of optimized portfolios – including some tests of significance – support strategies for investments in leveraged portfolios also. The approach seems to modify the meaning of \"nondiversifiable-risk\" of the market risk.","PeriodicalId":139826,"journal":{"name":"SWIFT Institute Research Paper Series","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SWIFT Institute Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2523505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

German Abstract: Angesichts der politischen und wirtschaftlichen Turbulenzen am Aktienmarkt stellt sich die Frage, ob es trotz umfassender Portfolioliteratur neuere Wege gibt, die Problematik des systematischen Risikos bei Aktienanlagen wesentlich zu mindern. Die folgende Arbeit leitet ein hierfur geeignetes und einfach zu handhabendes Portfoliomodell ab. Damit konnen die Auswirkungen fallender Kurse des Marktes in einem optimierten Portfoliomix eliminiert werden. Die These von der Nicht-Diversifizierbarkeit des systematischen Risikos scheint insoweit relativiert.English Abstract: The possibility to minimize volatility of the systematic risk while maximizing returns, is the use of an optimized buy long/sell short strategy that takes into account, that the market model is kinky. The equation of the market model – including a beta plus for increasing markets and a beta minus for descending markets – seems to be more qualified for this reason. The following approach shows the derivation of equations for an optimal configuration of a mix of stocks. These equations and some examples and figures of optimized portfolios – including some tests of significance – support strategies for investments in leveraged portfolios also. The approach seems to modify the meaning of "nondiversifiable-risk" of the market risk.
portfolio model zur Elimination des systematischen Risikos (portfolio Optimization for Elimination of Systematic Risk)
赫尔曼抽象:考虑到股市的政治和经济动荡,尽管投资组合不断恶化,系统风险问题仍有待改进。接下来的任务是设计合适且易于操作的投资组合模型,从而在最乐观的投资组合中消除市场下跌因素的影响。不干的风险。这一论点似乎是正确的。英国抽象:低波动性的系统风险在全系统风险回来时使用了乐观购买长龙的进账,市场模型是kinky。“市场模型的基因”——内在的贝塔加创建市场的贝塔加基于集约的贝塔加上基于集约的贝塔的贝塔应更加符合事实的资格。追随制造了一个组合的灵感。这些分类和一些扩展组合和优化组合的概念—结合了“意义评估”和“投资支持政策”组合。“市场风险的非多样化风险”的方法被认为是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信