Diversity study of multi-objective genetic algorithm based on Shannon entropy

E. Pires, J. Machado, P. Oliveira
{"title":"Diversity study of multi-objective genetic algorithm based on Shannon entropy","authors":"E. Pires, J. Machado, P. Oliveira","doi":"10.1109/NaBIC.2014.6921898","DOIUrl":null,"url":null,"abstract":"Multi-objective optimization inspired on genetic algorithms are population based search methods. The population elements, chromosomes, evolve using inheritance, mutation, selection and crossover mechanisms. The aim of these algorithms is to obtain a representative non-dominated Pareto front from a given problem. Several approaches to study the convergence and performance of algorithm variants have been proposed, particularly by accessing the final population. In this work, a novel approach by analyzing multi-objective algorithm dynamics during the algorithm execution is considered. The results indicate that Shannon entropy can be used as an algorithm indicator of diversity and convergence.","PeriodicalId":129539,"journal":{"name":"World Congress on Nature and Biologically Inspired Computing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Congress on Nature and Biologically Inspired Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NaBIC.2014.6921898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Multi-objective optimization inspired on genetic algorithms are population based search methods. The population elements, chromosomes, evolve using inheritance, mutation, selection and crossover mechanisms. The aim of these algorithms is to obtain a representative non-dominated Pareto front from a given problem. Several approaches to study the convergence and performance of algorithm variants have been proposed, particularly by accessing the final population. In this work, a novel approach by analyzing multi-objective algorithm dynamics during the algorithm execution is considered. The results indicate that Shannon entropy can be used as an algorithm indicator of diversity and convergence.
基于Shannon熵的多目标遗传算法的多样性研究
多目标优化是受遗传算法启发的基于种群的搜索方法。种群元素,染色体,通过遗传、突变、选择和交叉机制进化。这些算法的目的是从给定问题中获得具有代表性的非支配Pareto前沿。已经提出了几种研究算法变体的收敛性和性能的方法,特别是通过访问最终总体。本文提出了一种分析算法执行过程中多目标动态特性的新方法。结果表明,Shannon熵可以作为算法多样性和收敛性的指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信