{"title":"Investigation of Revolute Joint Clearances Created by an In-Mold Assembly Process","authors":"A. Ananthanarayanan, C. Thamire, S.K. Gupta","doi":"10.1109/ISAM.2007.4288458","DOIUrl":null,"url":null,"abstract":"Revolute joints are frequently used in articulated structures. Traditionally, such a joint is formed by assembling two components. As an alternative, revolute joints can be created inside the mold using an in-mold assembly process. This process eliminates the need for post-molding assembly, thus significantly reducing the cycle time and part count. The functional performance of a revolute joint depends on the clearance in the joint. The clearance in turn depends on the part shrinkage and the mold deformation during the molding process. The presence of a polymer part during the second molding stage makes an in-mold assembly process significantly different from the traditional molding process due to the difference in heat transfer and deformation characteristics. This paper presents experimental data and a preliminary model to explain the differences in clearance produced by an aluminum mold and an Aluminum mold with an Acrylonitrile butadiene styrene (ABS) insert. Our data indicates that there is a significant difference between the clearances observed from these two different types of molds. We believe that clearances produced depend strongly on the thermal history of the parts.","PeriodicalId":166385,"journal":{"name":"2007 IEEE International Symposium on Assembly and Manufacturing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Assembly and Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAM.2007.4288458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Revolute joints are frequently used in articulated structures. Traditionally, such a joint is formed by assembling two components. As an alternative, revolute joints can be created inside the mold using an in-mold assembly process. This process eliminates the need for post-molding assembly, thus significantly reducing the cycle time and part count. The functional performance of a revolute joint depends on the clearance in the joint. The clearance in turn depends on the part shrinkage and the mold deformation during the molding process. The presence of a polymer part during the second molding stage makes an in-mold assembly process significantly different from the traditional molding process due to the difference in heat transfer and deformation characteristics. This paper presents experimental data and a preliminary model to explain the differences in clearance produced by an aluminum mold and an Aluminum mold with an Acrylonitrile butadiene styrene (ABS) insert. Our data indicates that there is a significant difference between the clearances observed from these two different types of molds. We believe that clearances produced depend strongly on the thermal history of the parts.