Towards Extreme-Scale Simulations with Next-Generation Trilinos: A Low Mach Fluid Application Case Study

P. Lin, M. Bettencourt, S. Domino, T. Fisher, M. Hoemmen, Jonathan J. Hu, E. Phipps, A. Prokopenko, S. Rajamanickam, C. Siefert, E. Cyr, S. Kennon
{"title":"Towards Extreme-Scale Simulations with Next-Generation Trilinos: A Low Mach Fluid Application Case Study","authors":"P. Lin, M. Bettencourt, S. Domino, T. Fisher, M. Hoemmen, Jonathan J. Hu, E. Phipps, A. Prokopenko, S. Rajamanickam, C. Siefert, E. Cyr, S. Kennon","doi":"10.1109/IPDPSW.2014.166","DOIUrl":null,"url":null,"abstract":"Trilinos is an object-oriented software framework for the solution of large-scale, complex multi-physics engineering and scientific problems. While the original version of Trilinos was designed for highly scalable solutions for large problems, the need for increasingly higher fidelity simulations has pushed the problem sizes beyond what could have been envisioned two decades ago. When problem sizes exceed a billion elements even highly scalable applications and solver stacks require a complete revision. The next-generation Trilinos employs C++ templates in order to solve arbitrarily large problems and enable extreme-scale simulations. We present a case study that involves integration of Trilinos with an engineering application (Sierra low Mach module/Nalu), involving the simulation of low Mach fluid flow for problems of size up to nine billion elements. Through the use of improved algorithms and better software engineering practices, we demonstrate good weak scaling for the matrix assembly and solve for the engineering application for up to a nine billion element fluid flow large eddy simulation (LES) problem on unstructured meshes with a 27 billion row matrix on 131,072 cores of a Cray XE6 platform.","PeriodicalId":153864,"journal":{"name":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2014.166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Trilinos is an object-oriented software framework for the solution of large-scale, complex multi-physics engineering and scientific problems. While the original version of Trilinos was designed for highly scalable solutions for large problems, the need for increasingly higher fidelity simulations has pushed the problem sizes beyond what could have been envisioned two decades ago. When problem sizes exceed a billion elements even highly scalable applications and solver stacks require a complete revision. The next-generation Trilinos employs C++ templates in order to solve arbitrarily large problems and enable extreme-scale simulations. We present a case study that involves integration of Trilinos with an engineering application (Sierra low Mach module/Nalu), involving the simulation of low Mach fluid flow for problems of size up to nine billion elements. Through the use of improved algorithms and better software engineering practices, we demonstrate good weak scaling for the matrix assembly and solve for the engineering application for up to a nine billion element fluid flow large eddy simulation (LES) problem on unstructured meshes with a 27 billion row matrix on 131,072 cores of a Cray XE6 platform.
下一代Trilinos的极端尺度模拟:低马赫流体应用案例研究
Trilinos是一个面向对象的软件框架,用于解决大规模、复杂的多物理场工程和科学问题。虽然最初版本的Trilinos是为大型问题的高度可扩展解决方案而设计的,但对越来越高保真度模拟的需求已经将问题的规模推到了二十年前无法想象的地步。当问题规模超过10亿个元素时,即使是高度可扩展的应用程序和求解器堆栈也需要完全修改。下一代Trilinos使用c++模板来解决任意大的问题,并支持极端规模的模拟。我们提出了一个案例研究,涉及到Trilinos与工程应用(Sierra低马赫数模块/Nalu)的集成,涉及到规模高达90亿个元素的低马赫数流体流动问题的模拟。通过使用改进的算法和更好的软件工程实践,我们证明了矩阵装配的良好弱缩放性,并解决了在131,072个Cray XE6平台上具有270亿行矩阵的非结构化网格上高达90亿元的流体流动大涡模拟(LES)问题的工程应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信