The Nature of the Compactification

R. Schwartz
{"title":"The Nature of the Compactification","authors":"R. Schwartz","doi":"10.2307/j.ctv5rf6tz.20","DOIUrl":null,"url":null,"abstract":"This chapter looks more closely at Theorem 15.1 and gives more information about the PET that appears in that result. The basic idea of the proof is to remove from the torus Ŝ the singular set, i.e., the places where the PET is not defined. What is left over is isometric to the interior of a convex parallelotope. Section 16.2 analyzes the singular set and Section 16.3 constructs X1. Section 16.4 constructs the second parallelotope based on the action of the PET from Theorem 15.1. The proof of Theorem 16.1 finishes at the end of Section 16.4. Section 16.5 restates the case of Theorems 15.1 and 16.1 that apply to the pinwheel map associated to outer billiards on a polygon without parallel sides. The result is Theorem 16.9. Finally, Section 16.7 shows how Theorems 0.4 and 16.9 match up.","PeriodicalId":205299,"journal":{"name":"The Plaid Model","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plaid Model","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv5rf6tz.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter looks more closely at Theorem 15.1 and gives more information about the PET that appears in that result. The basic idea of the proof is to remove from the torus Ŝ the singular set, i.e., the places where the PET is not defined. What is left over is isometric to the interior of a convex parallelotope. Section 16.2 analyzes the singular set and Section 16.3 constructs X1. Section 16.4 constructs the second parallelotope based on the action of the PET from Theorem 15.1. The proof of Theorem 16.1 finishes at the end of Section 16.4. Section 16.5 restates the case of Theorems 15.1 and 16.1 that apply to the pinwheel map associated to outer billiards on a polygon without parallel sides. The result is Theorem 16.9. Finally, Section 16.7 shows how Theorems 0.4 and 16.9 match up.
紧化的性质
本章将更仔细地研究定理15.1,并提供更多关于该结果中出现的PET的信息。证明的基本思想是从环面Ŝ中去除奇异集,即PET没有定义的地方。剩下的部分与凸平行四边形的内部等距。16.2节分析奇异集,16.3节构造X1。第16.4节基于定理15.1中PET的作用构造第二个平行四边形。定理16.1的证明在第16.4节的末尾结束。第16.5节重申定理15.1和16.1的情况,它们适用于与没有平行边的多边形上的外台球相关的风车映射。结果就是定理16.9。最后,第16.7节将展示定理0.4和定理16.9如何匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信